#include <math.h> #include <pico/stdlib.h> #include <pico/stdio_usb.h> #include <pico/multicore.h> #include <pico/util/queue.h> #include <hardware/clocks.h> #include <hardware/dma.h> #include <hardware/gpio.h> #include <hardware/pll.h> #include <hardware/vreg.h> #include <hardware/sync.h> #include <hardware/pio.h> #include <hardware/pwm.h> #include <hardware/interp.h> #include <hardware/regs/clocks.h> #include <hardware/structs/bus_ctrl.h> #include <stdio.h> #include <limits.h> #include <stdlib.h> #define VREG_VOLTAGE VREG_VOLTAGE_1_20 #define CLK_SYS_HZ (320 * MHZ) #define RX_PIN 10 #define FB_PIN 11 #define PSU_PIN 23 #define PIO pio0 #define SM_RX 0 #define SM_BIAS 1 #define SM_COS 2 #define SM_SIN 3 #define IQ_SAMPLES 32 #define IQ_BLOCK_LEN (2 * IQ_SAMPLES) #define IQ_QUEUE_LEN 16 #define XOR_ADDR 0x1000 #define LO_BITS_DEPTH 15 #define LO_WORDS (1 << (LO_BITS_DEPTH - 2)) #define LO_COS_ACCUMULATOR (&PIO->sm[SM_COS].pinctrl) #define LO_SIN_ACCUMULATOR (&PIO->sm[SM_SIN].pinctrl) #define SIN_PHASE (0u) #define COS_PHASE (3u << 30) static uint32_t lo_cos[LO_WORDS] __attribute__((__aligned__(1 << LO_BITS_DEPTH))); static uint32_t lo_sin[LO_WORDS] __attribute__((__aligned__(1 << LO_BITS_DEPTH))); #define INIT_SAMPLE_RATE 100000 #define INIT_FREQ 94600000 static int frequency = INIT_FREQ; static int sample_rate = INIT_SAMPLE_RATE; #define BASE_GAIN (1 << 15) #define ATTN_BITS 10 #define DECIMATE 4 static int gain = BASE_GAIN / (CLK_SYS_HZ / INIT_SAMPLE_RATE); static queue_t iq_queue; static uint8_t iq_queue_buffer[IQ_QUEUE_LEN][IQ_BLOCK_LEN]; static size_t iq_queue_pos = 0; static uint32_t xorshift_seed; static inline __unused uint32_t xorshift(void) { uint32_t x = xorshift_seed; x ^= x << 13; x ^= x >> 17; x ^= x << 5; xorshift_seed = x; return x; } static void dma_channel_clear_chain_to(int ch) { uint32_t ctrl = dma_hw->ch[ch].al1_ctrl; ctrl &= ~DMA_CH0_CTRL_TRIG_CHAIN_TO_BITS; ctrl |= ch << DMA_CH0_CTRL_TRIG_CHAIN_TO_LSB; dma_hw->ch[ch].al1_ctrl = ctrl; } /* rx -> cp -> cos -> sin -> pio_cos -> pio_sin -> rx ... */ static int dma_ch_rx = -1; static int dma_ch_cp = -1; static int dma_ch_cos = -1; static int dma_ch_sin = -1; static int dma_ch_pio_cos = -1; static int dma_ch_pio_sin = -1; static int dma_ch_samp_cos = -1; static int dma_ch_samp_sin = -1; static int dma_t_samp = -1; static int origin_rx = -1; static int origin_bias = -1; static int origin_adder = 0; static void init_rx() { gpio_disable_pulls(RX_PIN); pio_gpio_init(PIO, RX_PIN); const uint16_t insn[] = { pio_encode_in(pio_pins, 1) | pio_encode_delay(0), }; pio_program_t prog = { .instructions = insn, .length = sizeof(insn) / sizeof(*insn), .origin = origin_rx, }; if (pio_can_add_program(PIO, &prog)) origin_rx = pio_add_program(PIO, &prog); pio_sm_config pc = pio_get_default_sm_config(); sm_config_set_in_pins(&pc, RX_PIN); sm_config_set_wrap(&pc, origin_rx, origin_rx + prog.length - 1); sm_config_set_clkdiv_int_frac(&pc, 1, 0); sm_config_set_fifo_join(&pc, PIO_FIFO_JOIN_RX); sm_config_set_in_shift(&pc, false, true, 32); pio_sm_init(PIO, SM_RX, origin_rx, &pc); pio_sm_set_consecutive_pindirs(PIO, SM_RX, RX_PIN, 1, GPIO_IN); } static void init_bias() { gpio_disable_pulls(RX_PIN); gpio_disable_pulls(FB_PIN); pio_gpio_init(PIO, FB_PIN); gpio_set_input_hysteresis_enabled(RX_PIN, false); gpio_set_drive_strength(FB_PIN, GPIO_DRIVE_STRENGTH_2MA); gpio_set_slew_rate(FB_PIN, GPIO_SLEW_RATE_SLOW); const uint16_t insn[] = { pio_encode_mov(pio_isr, pio_null), pio_encode_in(pio_y, 4), pio_encode_in(pio_pins, 1) | pio_encode_delay(15), pio_encode_in(pio_pins, 1) | pio_encode_delay(15), pio_encode_mov(pio_y, pio_isr), pio_encode_mov(pio_x, pio_isr), pio_encode_jmp_x_dec(6), pio_encode_mov_not(pio_pins, pio_pins) | pio_encode_sideset(1, 1), }; pio_program_t prog = { .instructions = insn, .length = sizeof(insn) / sizeof(*insn), .origin = origin_bias, }; if (pio_can_add_program(PIO, &prog)) origin_bias = pio_add_program(PIO, &prog); pio_sm_config pc = pio_get_default_sm_config(); sm_config_set_in_shift(&pc, false, false, 32); sm_config_set_sideset(&pc, 1, false, true); sm_config_set_sideset_pins(&pc, FB_PIN); sm_config_set_in_pins(&pc, RX_PIN); sm_config_set_out_pins(&pc, FB_PIN, 1); sm_config_set_set_pins(&pc, RX_PIN, 1); sm_config_set_wrap(&pc, origin_bias, origin_bias + prog.length - 1); sm_config_set_clkdiv_int_frac(&pc, 1, 0); pio_sm_init(PIO, SM_BIAS, origin_bias, &pc); pio_sm_exec_wait_blocking(PIO, SM_BIAS, pio_encode_set(pio_y, 31)); pio_sm_set_consecutive_pindirs(PIO, SM_BIAS, FB_PIN, 1, GPIO_OUT); } static const uint32_t samp_insn = 16; static void init_adder() { const uint16_t insn[] = { /* y has weight of 2, x has weight of 1 */ pio_encode_out(pio_pc, 4), // 0000 +0 pio_encode_jmp_x_dec(0), // 0001 +1 pio_encode_jmp_x_dec(0), // 0010 +1 pio_encode_jmp_y_dec(0), // 0011 +2 pio_encode_jmp_x_dec(0), // 0100 +1 pio_encode_jmp_y_dec(0), // 0101 +2 pio_encode_jmp_y_dec(0), // 0110 +2 pio_encode_jmp_y_dec(1), // 0111 +2 +1 pio_encode_jmp_x_dec(0), // 1000 +1 pio_encode_jmp_y_dec(0), // 1001 +2 pio_encode_jmp_y_dec(0), // 1010 +2 pio_encode_jmp_y_dec(1), // 1011 +2 +1 pio_encode_jmp_y_dec(0), // 1100 +2 pio_encode_jmp_y_dec(1), // 1101 +2 +1 pio_encode_jmp_y_dec(1), // 1110 +2 +1 pio_encode_jmp_y_dec(3), // 1111 +2 +2 /* * Should wrap here. * Jump to this portion must be inserted from the outside. */ pio_encode_in(pio_x, 16), pio_encode_in(pio_y, 16), pio_encode_out(pio_pc, 4), }; pio_program_t prog = { .instructions = insn, .length = sizeof(insn) / sizeof(*insn), .origin = origin_adder, }; if (pio_can_add_program(PIO, &prog)) origin_adder = pio_add_program(PIO, &prog); pio_sm_config pc = pio_get_default_sm_config(); sm_config_set_wrap(&pc, origin_adder, origin_adder + 15); sm_config_set_clkdiv_int_frac(&pc, 1, 0); sm_config_set_in_shift(&pc, false, true, 32); sm_config_set_out_shift(&pc, false, true, 32); pio_sm_init(PIO, SM_COS, origin_adder, &pc); pio_sm_init(PIO, SM_SIN, origin_adder, &pc); } static void lo_generate_phase(uint32_t *buf, size_t len, uint32_t step, uint32_t phase) { uint32_t bits = 0; for (size_t i = 0; i < len; i++) { for (int j = 0; j < 32; j++) { bits <<= 1; bits |= phase >> 31; phase += step; } buf[i] = bits; } } static void rx_lo_init(double freq) { double frac = (double)CLK_SYS_HZ / (8 << LO_BITS_DEPTH); freq = roundf(freq / frac) * frac; uint32_t step = freq * 4294967296.0 / CLK_SYS_HZ; lo_generate_phase(lo_cos, LO_WORDS, step, COS_PHASE); lo_generate_phase(lo_sin, LO_WORDS, step, SIN_PHASE); } static void rf_rx_start() { dma_ch_rx = dma_claim_unused_channel(true); dma_ch_cp = dma_claim_unused_channel(true); dma_ch_cos = dma_claim_unused_channel(true); dma_ch_sin = dma_claim_unused_channel(true); dma_ch_pio_cos = dma_claim_unused_channel(true); dma_ch_pio_sin = dma_claim_unused_channel(true); dma_ch_samp_cos = dma_claim_unused_channel(true); dma_ch_samp_sin = dma_claim_unused_channel(true); dma_channel_config dma_conf; /* Read received word into accumulator I. */ dma_conf = dma_channel_get_default_config(dma_ch_rx); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, false); channel_config_set_dreq(&dma_conf, pio_get_dreq(PIO, SM_RX, false)); channel_config_set_chain_to(&dma_conf, dma_ch_cp); dma_channel_configure(dma_ch_rx, &dma_conf, LO_COS_ACCUMULATOR, &PIO->rxf[SM_RX], 1, false); /* Copy accumulator I to accumulator Q. */ dma_conf = dma_channel_get_default_config(dma_ch_cp); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, false); channel_config_set_chain_to(&dma_conf, dma_ch_cos); dma_channel_configure(dma_ch_cp, &dma_conf, LO_SIN_ACCUMULATOR, LO_COS_ACCUMULATOR, 1, false); /* Read lo_cos into accumulator I with XOR. */ dma_conf = dma_channel_get_default_config(dma_ch_cos); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, true); channel_config_set_write_increment(&dma_conf, false); channel_config_set_ring(&dma_conf, false, LO_BITS_DEPTH); channel_config_set_chain_to(&dma_conf, dma_ch_sin); dma_channel_configure(dma_ch_cos, &dma_conf, LO_COS_ACCUMULATOR + XOR_ADDR / 4, lo_cos, 1, false); /* Read lo_sin into accumulator Q with XOR. */ dma_conf = dma_channel_get_default_config(dma_ch_sin); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, true); channel_config_set_write_increment(&dma_conf, false); channel_config_set_ring(&dma_conf, false, LO_BITS_DEPTH); channel_config_set_chain_to(&dma_conf, dma_ch_pio_cos); dma_channel_configure(dma_ch_sin, &dma_conf, LO_SIN_ACCUMULATOR + XOR_ADDR / 4, lo_sin, 1, false); /* Copy mixed I accumulator to PIO adder I. */ dma_conf = dma_channel_get_default_config(dma_ch_pio_cos); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, false); channel_config_set_dreq(&dma_conf, pio_get_dreq(PIO, SM_COS, true)); channel_config_set_chain_to(&dma_conf, dma_ch_pio_sin); dma_channel_configure(dma_ch_pio_cos, &dma_conf, &PIO->txf[SM_COS], LO_COS_ACCUMULATOR, 1, false); /* Copy mixed Q accumulator to PIO adder Q. */ dma_conf = dma_channel_get_default_config(dma_ch_pio_sin); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, false); channel_config_set_dreq(&dma_conf, pio_get_dreq(PIO, SM_SIN, true)); channel_config_set_chain_to(&dma_conf, dma_ch_rx); dma_channel_configure(dma_ch_pio_sin, &dma_conf, &PIO->txf[SM_SIN], LO_SIN_ACCUMULATOR, 1, false); /* Trigger I accumulator values push. */ dma_conf = dma_channel_get_default_config(dma_ch_samp_cos); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, false); channel_config_set_dreq(&dma_conf, dma_get_timer_dreq(dma_t_samp)); channel_config_set_high_priority(&dma_conf, true); channel_config_set_chain_to(&dma_conf, dma_ch_samp_sin); dma_channel_configure(dma_ch_samp_cos, &dma_conf, &PIO->sm[SM_COS].instr, &samp_insn, 1, false); /* Trigger Q accumulator values push. */ dma_conf = dma_channel_get_default_config(dma_ch_samp_sin); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, false); channel_config_set_high_priority(&dma_conf, true); channel_config_set_chain_to(&dma_conf, dma_ch_samp_cos); dma_channel_configure(dma_ch_samp_sin, &dma_conf, &PIO->sm[SM_SIN].instr, &samp_insn, 1, false); init_bias(); init_adder(); init_rx(); dma_channel_start(dma_ch_rx); dma_channel_start(dma_ch_samp_cos); pio_set_sm_mask_enabled(PIO, 0x0f, true); } static void rf_rx_stop(void) { pio_set_sm_mask_enabled(PIO, 0x0f, false); pio_sm_restart(PIO, 0); pio_sm_restart(PIO, 1); pio_sm_restart(PIO, 2); pio_sm_restart(PIO, 3); pio_sm_clear_fifos(PIO, 0); pio_sm_clear_fifos(PIO, 1); pio_sm_clear_fifos(PIO, 2); pio_sm_clear_fifos(PIO, 3); sleep_us(10); dma_channel_clear_chain_to(dma_ch_rx); dma_channel_clear_chain_to(dma_ch_cp); dma_channel_clear_chain_to(dma_ch_cos); dma_channel_clear_chain_to(dma_ch_sin); dma_channel_clear_chain_to(dma_ch_pio_cos); dma_channel_clear_chain_to(dma_ch_pio_sin); dma_channel_clear_chain_to(dma_ch_samp_cos); dma_channel_clear_chain_to(dma_ch_samp_sin); dma_channel_abort(dma_ch_rx); dma_channel_abort(dma_ch_cp); dma_channel_abort(dma_ch_cos); dma_channel_abort(dma_ch_sin); dma_channel_abort(dma_ch_pio_cos); dma_channel_abort(dma_ch_pio_sin); dma_channel_abort(dma_ch_samp_cos); dma_channel_abort(dma_ch_samp_sin); dma_channel_cleanup(dma_ch_rx); dma_channel_cleanup(dma_ch_cp); dma_channel_cleanup(dma_ch_cos); dma_channel_cleanup(dma_ch_sin); dma_channel_cleanup(dma_ch_pio_cos); dma_channel_cleanup(dma_ch_pio_sin); dma_channel_cleanup(dma_ch_samp_cos); dma_channel_cleanup(dma_ch_samp_sin); dma_channel_unclaim(dma_ch_rx); dma_channel_unclaim(dma_ch_cp); dma_channel_unclaim(dma_ch_cos); dma_channel_unclaim(dma_ch_sin); dma_channel_unclaim(dma_ch_pio_cos); dma_channel_unclaim(dma_ch_pio_sin); dma_channel_unclaim(dma_ch_samp_cos); dma_channel_unclaim(dma_ch_samp_sin); dma_ch_rx = -1; dma_ch_cp = -1; dma_ch_cos = -1; dma_ch_sin = -1; dma_ch_pio_cos = -1; dma_ch_pio_sin = -1; dma_ch_samp_cos = -1; dma_ch_samp_sin = -1; } inline static void led_set(bool on) { gpio_put(PICO_DEFAULT_LED_PIN, on); } inline static uint32_t pio_sm_get_blocking_unsafe(pio_hw_t *pio, int sm) { while (pio->fstat & (1u << (PIO_FSTAT_RXEMPTY_LSB + sm))) asm volatile("nop"); return pio->rxf[sm]; } static int Ia1, Ia2, Ia3; static int Ib1, Ib2, Ib3; static int Qa1, Qa2, Qa3; static int Qb1, Qb2, Qb3; inline static void accI() { static uint16_t py, px; uint32_t yx = pio_sm_get_blocking_unsafe(PIO, SM_COS); uint16_t y = yx >> 16; uint16_t x = yx; uint16_t ny = py - y; uint16_t nx = px - x; py = y; px = x; uint32_t s = (ny << 1) + nx; Ia1 += s; Ia2 += Ia1; Ia3 += Ia2; } inline static void accQ() { static uint16_t py, px; uint32_t yx = pio_sm_get_blocking_unsafe(PIO, SM_SIN); uint16_t y = yx >> 16; uint16_t x = yx; uint16_t ny = py - y; uint16_t nx = px - x; py = y; px = x; uint32_t s = (ny << 1) + nx; Qa1 += s; Qa2 += Qa1; Qa3 += Qa2; } inline static int getI() { uint32_t c1, c2, c3; c3 = Ia3 - Ib3; Ib3 = Ia3; c2 = c3 - Ib2; Ib2 = c3; c1 = c2 - Ib1; Ib1 = c2; return (int)c1; } inline static int getQ() { uint32_t c1, c2, c3; c3 = Qa3 - Qb3; Qb3 = Qa3; c2 = c3 - Qb2; Qb2 = c3; c1 = c2 - Qb1; Qb1 = c2; return (int)c1; } static void rf_rx(void) { while (true) { if (multicore_fifo_rvalid()) { multicore_fifo_pop_blocking(); multicore_fifo_push_blocking(0); return; } uint8_t *block = iq_queue_buffer[iq_queue_pos]; uint8_t *blockptr = block; for (int i = 0; i < IQ_SAMPLES; i++) { for (int d = 0; d < DECIMATE; d++) { accI(); accQ(); } int I = getI() * gain; int Q = getQ() * gain; I >>= ATTN_BITS; *blockptr++ = I + 128; Q >>= ATTN_BITS; *blockptr++ = Q + 128; } if (queue_try_add(&iq_queue, &block)) { iq_queue_pos = (iq_queue_pos + 1) % IQ_QUEUE_LEN; led_set(0); } else { led_set(1); } } } static void run_command(uint8_t cmd, uint32_t arg) { if (0x01 == cmd) { /* Tune to a new center frequency */ frequency = arg; rx_lo_init(frequency); } else if (0x02 == cmd) { /* Set the rate at which IQ sample pairs are sent */ sample_rate = arg; gain = BASE_GAIN / (CLK_SYS_HZ / sample_rate); dma_timer_set_fraction(dma_t_samp, 1, CLK_SYS_HZ / (sample_rate * DECIMATE)); rx_lo_init(frequency); } } static int check_command(void) { static uint8_t buf[5]; static int pos = 0; int c; while ((c = getchar_timeout_us(0)) >= 0) { if (0 == pos && 0 == c) return 0; buf[pos++] = c; if (5 == pos) { uint32_t arg = (buf[1] << 24) | (buf[2] << 16) | (buf[3] << 8) | buf[4]; run_command(buf[0], arg); pos = 0; return buf[0]; } } return -1; } static void do_rx() { const uint8_t *block; while (queue_try_remove(&iq_queue, &block)) /* Flush the queue */; rf_rx_start(); sleep_us(100); multicore_launch_core1(rf_rx); while (true) { int cmd; while ((cmd = check_command()) >= 0) if (0 == cmd) goto done; if (queue_try_remove(&iq_queue, &block)) { fwrite(block, IQ_BLOCK_LEN, 1, stdout); fflush(stdout); } else { int wait = xorshift() >> (32 - 15); for (int i = 0; i < wait; i++) asm volatile("nop"); } } done: multicore_fifo_push_blocking(0); multicore_fifo_pop_blocking(); sleep_us(100); multicore_reset_core1(); rf_rx_stop(); } int main() { vreg_set_voltage(VREG_VOLTAGE); set_sys_clock_khz(CLK_SYS_HZ / KHZ, true); clock_configure(clk_peri, 0, CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS, CLK_SYS_HZ, CLK_SYS_HZ); /* Enable PSU PWM mode. */ gpio_init(PSU_PIN); gpio_set_dir(PSU_PIN, GPIO_OUT); gpio_put(PSU_PIN, 1); gpio_init(PICO_DEFAULT_LED_PIN); gpio_set_dir(PICO_DEFAULT_LED_PIN, GPIO_OUT); gpio_put(PICO_DEFAULT_LED_PIN, 0); /* Prioritize DMA over CPU. */ bus_ctrl_hw->priority |= BUSCTRL_BUS_PRIORITY_DMA_W_BITS | BUSCTRL_BUS_PRIORITY_DMA_R_BITS; stdio_usb_init(); setvbuf(stdout, NULL, _IONBF, 0); queue_init(&iq_queue, sizeof(uint8_t *), IQ_QUEUE_LEN); rx_lo_init(frequency); /* We need to have the sampling timer ready. */ dma_t_samp = dma_claim_unused_timer(true); dma_timer_set_fraction(dma_t_samp, 1, CLK_SYS_HZ / (sample_rate * DECIMATE)); while (true) { if (check_command() > 0) { static const uint32_t header[3] = { __builtin_bswap32(0x52544c30), __builtin_bswap32(5), __builtin_bswap32(29) }; fwrite(header, sizeof header, 1, stdout); fflush(stdout); do_rx(); } sleep_ms(10); } }