#include <pico/stdlib.h> #include <pico/stdio_usb.h> #include <pico/multicore.h> #include <pico/util/queue.h> #include <hardware/clocks.h> #include <hardware/dma.h> #include <hardware/gpio.h> #include <hardware/pll.h> #include <hardware/vreg.h> #include <hardware/sync.h> #include <hardware/pio.h> #include <hardware/pwm.h> #include <hardware/interp.h> #include <hardware/regs/clocks.h> #include <hardware/structs/bus_ctrl.h> #include <math.h> #include <stdio.h> #include <limits.h> #include <stdlib.h> #define VREG_VOLTAGE VREG_VOLTAGE_1_20 #define CLK_SYS_HZ (288 * MHZ) #define INIT_SAMPLE_RATE 100000 #define INIT_FREQ 94600000 #define INIT_GAIN 127 #define LO_PIN 9 #define RX_PIN 13 #define FB_PIN 5 #define PSU_PIN 23 #define PIO pio1 #define SM_LO 0 #define SM_FB 1 #define SM_RX 2 #define SM_AD 3 #define IQ_SAMPLES 32 #define IQ_BLOCK_LEN (2 * IQ_SAMPLES) #define IQ_QUEUE_LEN 8 /* * NOTE: Must have 256 phases with 256 bytes each. * Otherwise the DMA 1-byte write trick wouldn't work. */ #define LO_NUM_PHASES 256 #define LO_PHASE_BITS 8 #define LO_PHASE_WORDS (1 << (LO_PHASE_BITS - 2)) #define STEP_BASE ((UINT_MAX + 1.0) / CLK_SYS_HZ) static uint32_t nco_step = (uint32_t)(STEP_BASE * INIT_FREQ) * 32 * LO_PHASE_WORDS; static uint32_t nco_null = 0; static uint32_t lo_phase[LO_NUM_PHASES][LO_PHASE_WORDS] __attribute__((__aligned__(LO_NUM_PHASES * 4 * LO_PHASE_WORDS))); static uint32_t nco_addr = (uint32_t)lo_phase; #define DECIMATE 16 #define RX_BITS_DEPTH 10 #define RX_WORDS (1 << (RX_BITS_DEPTH - 2)) static uint32_t rx_cos[RX_WORDS] __attribute__((__aligned__(1 << RX_BITS_DEPTH))); static const uint32_t *rx_start = rx_cos; static const uint32_t *rx_end = rx_cos + RX_WORDS - 1; #define NUM_GAINS 29 static int gains[NUM_GAINS] = { 0, 9, 14, 27, 37, 77, 87, 125, 144, 157, 166, 197, 207, 229, 254, 280, 297, 328, 338, 364, 372, 386, 402, 421, 434, 439, 445, 480, 496 }; static int sample_rate = INIT_SAMPLE_RATE; static int dc_level = CLK_SYS_HZ / INIT_SAMPLE_RATE / 2; static int gain = INIT_GAIN; static int frequency = INIT_FREQ; static int dma_ch_rx1 = -1; static int dma_ch_rx2 = -1; static int dma_ch_nco1 = -1; static int dma_ch_nco2 = -1; static int dma_ch_nco3 = -1; static int dma_ch_mix = -1; static int dma_ch_samp_cos = -1; static int dma_t_samp = -1; static int dma_ch_in_cos = -1; static queue_t iq_queue; static uint8_t iq_queue_buffer[IQ_QUEUE_LEN][IQ_BLOCK_LEN]; static size_t iq_queue_pos = 0; static uint32_t rnd = 0; static int origin_lo = -1; static int origin_rx = -1; static int origin_fb = -1; static int origin_ad = 0; inline static __unused uint32_t rnd_next() { rnd = rnd * 0x41c64e6d + 12345; return rnd; } static void dma_channel_clear_chain_to(int ch) { uint32_t ctrl = dma_hw->ch[ch].al1_ctrl; ctrl &= ~DMA_CH0_CTRL_TRIG_CHAIN_TO_BITS; ctrl |= ch << DMA_CH0_CTRL_TRIG_CHAIN_TO_LSB; dma_hw->ch[ch].al1_ctrl = ctrl; } static void init_lo() { gpio_disable_pulls(LO_PIN); pio_gpio_init(PIO, LO_PIN); gpio_set_drive_strength(LO_PIN, GPIO_DRIVE_STRENGTH_12MA); gpio_set_slew_rate(LO_PIN, GPIO_SLEW_RATE_FAST); const uint16_t insn[] = { pio_encode_out(pio_pindirs, 1), }; pio_program_t prog = { .instructions = insn, .length = sizeof(insn) / sizeof(*insn), .origin = origin_lo, }; pio_sm_restart(PIO, SM_LO); pio_sm_clear_fifos(PIO, SM_LO); if (pio_can_add_program(PIO, &prog)) origin_lo = pio_add_program(PIO, &prog); pio_sm_config pc = pio_get_default_sm_config(); sm_config_set_out_pins(&pc, LO_PIN, 1); sm_config_set_set_pins(&pc, LO_PIN, 1); sm_config_set_wrap(&pc, origin_lo, origin_lo + prog.length - 1); sm_config_set_clkdiv_int_frac(&pc, 1, 0); sm_config_set_fifo_join(&pc, PIO_FIFO_JOIN_TX); sm_config_set_out_shift(&pc, false, true, 32); pio_sm_init(PIO, SM_LO, origin_lo, &pc); pio_sm_set_consecutive_pindirs(PIO, SM_LO, LO_PIN, 1, GPIO_IN); pio_sm_exec_wait_blocking(PIO, SM_LO, pio_encode_set(pio_pins, 0)); } static void init_fb() { gpio_disable_pulls(FB_PIN); pio_gpio_init(PIO, FB_PIN); // NOTE: Not sure if this is ideal. hw_set_bits(&PIO->input_sync_bypass, 1u << RX_PIN); gpio_set_input_hysteresis_enabled(RX_PIN, false); gpio_set_drive_strength(FB_PIN, GPIO_DRIVE_STRENGTH_2MA); gpio_set_slew_rate(FB_PIN, GPIO_SLEW_RATE_SLOW); const uint16_t insn[] = { pio_encode_mov_not(pio_pins, pio_pins) | pio_encode_sideset(1, 1) | pio_encode_delay(0), //pio_encode_nop() | pio_encode_sideset(1, 0) | pio_encode_delay(0), }; pio_program_t prog = { .instructions = insn, .length = sizeof(insn) / sizeof(*insn), .origin = origin_fb, }; pio_sm_restart(PIO, SM_FB); pio_sm_clear_fifos(PIO, SM_FB); if (pio_can_add_program(PIO, &prog)) origin_fb = pio_add_program(PIO, &prog); pio_sm_config pc = pio_get_default_sm_config(); sm_config_set_sideset(&pc, 1, false, true); sm_config_set_in_pins(&pc, RX_PIN); sm_config_set_out_pins(&pc, FB_PIN, 1); sm_config_set_set_pins(&pc, FB_PIN, 1); sm_config_set_sideset_pins(&pc, FB_PIN); sm_config_set_wrap(&pc, origin_fb, origin_fb + prog.length - 1); sm_config_set_clkdiv_int_frac(&pc, 1, 0); pio_sm_init(PIO, SM_FB, origin_fb, &pc); pio_sm_set_consecutive_pindirs(PIO, SM_FB, FB_PIN, 1, GPIO_OUT); } static void init_rx() { gpio_disable_pulls(RX_PIN); pio_gpio_init(PIO, RX_PIN); const uint16_t insn[] = { pio_encode_in(pio_pins, 1) | pio_encode_delay(0), }; pio_program_t prog = { .instructions = insn, .length = sizeof(insn) / sizeof(*insn), .origin = origin_rx, }; pio_sm_restart(PIO, SM_RX); pio_sm_clear_fifos(PIO, SM_RX); if (pio_can_add_program(PIO, &prog)) origin_rx = pio_add_program(PIO, &prog); pio_sm_config pc = pio_get_default_sm_config(); sm_config_set_in_pins(&pc, RX_PIN); sm_config_set_wrap(&pc, origin_rx, origin_rx + prog.length - 1); sm_config_set_clkdiv_int_frac(&pc, 1, 0); sm_config_set_fifo_join(&pc, PIO_FIFO_JOIN_RX); sm_config_set_in_shift(&pc, false, true, 32); pio_sm_init(PIO, SM_RX, origin_rx, &pc); pio_sm_set_consecutive_pindirs(PIO, SM_RX, RX_PIN, 1, GPIO_IN); } static const uint32_t samp_insn = 16; static void init_ad() { const uint16_t insn[] = { pio_encode_out(pio_pc, 4), // 0000 +0 pio_encode_jmp_x_dec(0), // 0001 +1 pio_encode_jmp_x_dec(0), // 0010 +1 pio_encode_jmp_y_dec(0), // 0011 +2 pio_encode_jmp_x_dec(0), // 0100 +1 pio_encode_jmp_y_dec(0), // 0101 +2 pio_encode_jmp_y_dec(0), // 0110 +2 pio_encode_jmp_y_dec(1), // 0111 +2 +1 pio_encode_jmp_x_dec(0), // 1000 +1 pio_encode_jmp_y_dec(0), // 1001 +2 pio_encode_jmp_y_dec(0), // 1010 +2 pio_encode_jmp_y_dec(1), // 1011 +2 +1 pio_encode_jmp_y_dec(0), // 1100 +2 pio_encode_jmp_y_dec(1), // 1101 +2 +1 pio_encode_jmp_y_dec(1), // 1110 +2 +1 pio_encode_jmp_y_dec(3), // 1111 +2 +2 /* * Should wrap here. * Jump to this portion must be inserted from the outside. */ pio_encode_in(pio_y, 32), pio_encode_in(pio_x, 32), pio_encode_set(pio_y, 0), pio_encode_set(pio_x, 0), pio_encode_jmp_y_dec(21), pio_encode_jmp_x_dec(22), pio_encode_out(pio_pc, 4), }; pio_program_t prog = { .instructions = insn, .length = sizeof(insn) / sizeof(*insn), .origin = origin_ad, }; pio_sm_restart(PIO, SM_AD); pio_sm_clear_fifos(PIO, SM_AD); if (pio_can_add_program(PIO, &prog)) pio_add_program(PIO, &prog); pio_sm_config pc = pio_get_default_sm_config(); sm_config_set_wrap(&pc, origin_ad, origin_ad + 15); sm_config_set_clkdiv_int_frac(&pc, 1, 0); sm_config_set_in_shift(&pc, false, true, 32); sm_config_set_out_shift(&pc, false, true, 32); pio_sm_init(PIO, SM_AD, origin_ad, &pc); } static void lo_generate_phase(uint32_t *buf, size_t len, uint32_t step, uint32_t phase) { for (size_t i = 0; i < len; i++) { uint32_t bits = 0; for (int j = 0; j < 32; j++) { bits |= phase >> 31; bits <<= 1; phase += step; } buf[i] = bits; } } static void rx_lo_init(double freq) { uint32_t step = STEP_BASE * freq; for (uint32_t i = 0; i < LO_NUM_PHASES; i++) lo_generate_phase(lo_phase[i], LO_PHASE_WORDS, step, i << 24); nco_step = step * 32 * LO_PHASE_WORDS; } static void rf_rx_start() { dma_ch_rx1 = dma_claim_unused_channel(true); dma_ch_rx2 = dma_claim_unused_channel(true); dma_ch_nco1 = dma_claim_unused_channel(true); dma_ch_nco2 = dma_claim_unused_channel(true); dma_ch_nco3 = dma_claim_unused_channel(true); dma_ch_mix = dma_claim_unused_channel(true); dma_ch_samp_cos = dma_claim_unused_channel(true); dma_channel_config dma_conf; /* Copy PDM bitstream into decimator. */ dma_conf = dma_channel_get_default_config(dma_ch_rx1); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, false); channel_config_set_dreq(&dma_conf, pio_get_dreq(PIO, SM_RX, GPIO_IN)); channel_config_set_chain_to(&dma_conf, dma_ch_rx2); dma_channel_configure(dma_ch_rx1, &dma_conf, &PIO->txf[SM_AD], &PIO->rxf[SM_RX], UINT_MAX, false); dma_conf = dma_channel_get_default_config(dma_ch_rx2); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, false); channel_config_set_dreq(&dma_conf, pio_get_dreq(PIO, SM_RX, GPIO_IN)); channel_config_set_chain_to(&dma_conf, dma_ch_rx1); dma_channel_configure(dma_ch_rx2, &dma_conf, &PIO->txf[SM_AD], &PIO->rxf[SM_RX], UINT_MAX, false); /* Step the NCO. */ dma_conf = dma_channel_get_default_config(dma_ch_nco1); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, false); channel_config_set_chain_to(&dma_conf, dma_ch_nco2); dma_channel_configure(dma_ch_nco1, &dma_conf, &nco_null, &nco_step, 1, false); /* DMA above will increment the phase accumulator. */ dma_sniffer_enable(dma_ch_nco1, DMA_SNIFF_CTRL_CALC_VALUE_SUM, true); /* Prepare the phase address. */ dma_conf = dma_channel_get_default_config(dma_ch_nco2); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_8); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, false); channel_config_set_chain_to(&dma_conf, dma_ch_nco3); dma_channel_configure(dma_ch_nco2, &dma_conf, (uint8_t *)(&nco_addr) + 1, ((uint8_t *)&dma_hw->sniff_data) + 3, 1, false); /* Trigger LO using the address. */ dma_conf = dma_channel_get_default_config(dma_ch_nco3); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, false); dma_channel_configure(dma_ch_nco3, &dma_conf, &dma_hw->ch[dma_ch_mix].al3_read_addr_trig, &nco_addr, 1, false); /* Drive the LO capacitor. */ dma_conf = dma_channel_get_default_config(dma_ch_mix); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, true); channel_config_set_write_increment(&dma_conf, false); channel_config_set_dreq(&dma_conf, pio_get_dreq(PIO, SM_LO, GPIO_OUT)); channel_config_set_chain_to(&dma_conf, dma_ch_nco1); dma_channel_configure(dma_ch_mix, &dma_conf, &PIO->txf[SM_LO], lo_phase, LO_PHASE_WORDS, false); /* Trigger accumulator values push. */ dma_conf = dma_channel_get_default_config(dma_ch_samp_cos); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, false); channel_config_set_high_priority(&dma_conf, true); channel_config_set_dreq(&dma_conf, dma_get_timer_dreq(dma_t_samp)); dma_channel_configure(dma_ch_samp_cos, &dma_conf, &PIO->sm[SM_AD].instr, &samp_insn, UINT_MAX, false); init_ad(); init_lo(); init_fb(); init_rx(); dma_channel_start(dma_ch_rx1); dma_channel_start(dma_ch_nco1); dma_channel_start(dma_ch_samp_cos); pio_set_sm_mask_enabled(PIO, 0x0f, true); } static void rf_rx_stop(void) { pio_set_sm_mask_enabled(PIO, 0x0f, false); sleep_us(10); dma_channel_clear_chain_to(dma_ch_rx1); dma_channel_clear_chain_to(dma_ch_rx2); dma_channel_clear_chain_to(dma_ch_nco1); dma_channel_clear_chain_to(dma_ch_nco2); dma_channel_clear_chain_to(dma_ch_nco3); dma_channel_clear_chain_to(dma_ch_mix); dma_channel_clear_chain_to(dma_ch_samp_cos); dma_channel_abort(dma_ch_rx1); dma_channel_abort(dma_ch_rx2); dma_channel_abort(dma_ch_nco1); dma_channel_abort(dma_ch_nco2); dma_channel_abort(dma_ch_nco3); dma_channel_abort(dma_ch_mix); dma_channel_abort(dma_ch_samp_cos); dma_channel_cleanup(dma_ch_rx1); dma_channel_cleanup(dma_ch_rx2); dma_channel_cleanup(dma_ch_nco1); dma_channel_cleanup(dma_ch_nco2); dma_channel_cleanup(dma_ch_nco3); dma_channel_cleanup(dma_ch_mix); dma_channel_cleanup(dma_ch_samp_cos); dma_channel_unclaim(dma_ch_rx1); dma_channel_unclaim(dma_ch_rx2); dma_channel_unclaim(dma_ch_nco1); dma_channel_unclaim(dma_ch_nco2); dma_channel_unclaim(dma_ch_nco3); dma_channel_unclaim(dma_ch_mix); dma_channel_unclaim(dma_ch_samp_cos); dma_ch_rx1 = -1; dma_ch_rx2 = -1; dma_ch_nco1 = -1; dma_ch_nco2 = -1; dma_ch_nco3 = -1; dma_ch_mix = -1; dma_ch_samp_cos = -1; } struct IQ { int I, Q; }; inline static int get_next_sample() { static const uint32_t *tail = rx_cos; const uint32_t *head = (const uint32_t *)dma_hw->ch[dma_ch_in_cos].write_addr; while (head == tail) { asm volatile("nop; nop; nop; nop"); head = (const uint32_t *)dma_hw->ch[dma_ch_in_cos].write_addr; } int value = -(*tail++); value *= 2; value -= *tail++; if (tail > rx_end) tail = rx_start; return gain * value - dc_level; } inline static struct IQ next_sample() { int I = 0, Q = 0; int x15 = get_next_sample(); I += 93 * x15; Q += 39 * x15; int x14 = get_next_sample(); I += 71 * x14; Q += 71 * x14; int x13 = get_next_sample(); I += 39 * x13; Q += 93 * x13; int x12 = get_next_sample(); I += 0 * x12; Q += 101 * x12; int x11 = get_next_sample(); I += -39 * x11; Q += 93 * x11; int x10 = get_next_sample(); I += -71 * x10; Q += 71 * x10; int x09 = get_next_sample(); I += -93 * x09; Q += 39 * x09; int x08 = get_next_sample(); I += -101 * x08; Q += 0 * x08; int x07 = get_next_sample(); I += -93 * x07; Q += -39 * x07; int x06 = get_next_sample(); I += -71 * x06; Q += -71 * x06; int x05 = get_next_sample(); I += -39 * x05; Q += -93 * x05; int x04 = get_next_sample(); I += 0 * x04; Q += -101 * x04; int x03 = get_next_sample(); I += 39 * x03; Q += -93 * x03; int x02 = get_next_sample(); I += 71 * x02; Q += -71 * x02; int x01 = get_next_sample(); I += 93 * x01; Q += -39 * x01; int x00 = get_next_sample(); I += 101 * x00; Q += 0 * x00; I /= 1024; Q /= 1024; return (struct IQ){ I, Q }; } static void rf_rx(void) { while (true) { if (multicore_fifo_rvalid()) { multicore_fifo_pop_blocking(); multicore_fifo_push_blocking(0); return; } uint8_t *block = iq_queue_buffer[iq_queue_pos]; uint8_t *blockptr = block; for (int i = 0; i < IQ_SAMPLES; i++) { struct IQ IQ = next_sample(); int64_t I = IQ.I; int64_t Q = IQ.Q; I /= dc_level; if (I > 127) I = 127; else if (I < -128) I = -128; *blockptr++ = (uint8_t)I + 128; Q /= dc_level; if (Q > 127) Q = 127; else if (Q < -128) Q = -128; *blockptr++ = (uint8_t)Q + 128; } if (queue_try_add(&iq_queue, &block)) { iq_queue_pos = (iq_queue_pos + 1) & (IQ_QUEUE_LEN - 1); } } } static void run_command(uint8_t cmd, uint32_t arg) { if (0x01 == cmd) { /* Tune to a new center frequency */ frequency = arg; rx_lo_init(frequency + sample_rate); } else if (0x02 == cmd) { /* Set the rate at which IQ sample pairs are sent */ sample_rate = arg; dc_level = CLK_SYS_HZ / sample_rate / 2; dma_timer_set_fraction(dma_t_samp, 1, CLK_SYS_HZ / (sample_rate * DECIMATE)); rx_lo_init(frequency + sample_rate); } else if (0x04 == cmd) { /* Set the tuner gain level */ gain = INIT_GAIN * powf(10.0f, arg / 200.0f); } else if (0x0d == cmd) { /* Set tuner gain by the tuner's gain index */ if (arg >= NUM_GAINS) arg = NUM_GAINS - 1; gain = INIT_GAIN * powf(10.0f, gains[arg] / 200.0f); } } static int check_command(void) { static uint8_t buf[5]; static int pos = 0; int c; while ((c = getchar_timeout_us(0)) >= 0) { if (0 == pos && 0 == c) return 0; buf[pos++] = c; if (5 == pos) { uint32_t arg = (buf[1] << 24) | (buf[2] << 16) | (buf[3] << 8) | buf[4]; run_command(buf[0], arg); pos = 0; return buf[0]; } } return -1; } static void do_rx() { rf_rx_start(); sleep_us(100); dma_ch_in_cos = dma_claim_unused_channel(true); dma_channel_config dma_conf; dma_conf = dma_channel_get_default_config(dma_ch_in_cos); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, true); channel_config_set_ring(&dma_conf, GPIO_OUT, RX_BITS_DEPTH); channel_config_set_dreq(&dma_conf, pio_get_dreq(PIO, SM_AD, false)); dma_channel_configure(dma_ch_in_cos, &dma_conf, rx_cos, &PIO->rxf[SM_AD], UINT_MAX, true); multicore_launch_core1(rf_rx); const uint8_t *block; while (queue_try_remove(&iq_queue, &block)) /* Flush the queue */; while (true) { int cmd; while ((cmd = check_command()) >= 0) if (0 == cmd) goto done; if (queue_try_remove(&iq_queue, &block)) { fwrite(block, IQ_BLOCK_LEN, 1, stdout); fflush(stdout); } else { int wait = rnd_next() & 0x1fff; for (int i = 0; i < wait; i++) asm volatile("nop"); } } done: multicore_fifo_push_blocking(0); multicore_fifo_pop_blocking(); sleep_us(10); multicore_reset_core1(); rf_rx_stop(); dma_channel_clear_chain_to(dma_ch_in_cos); dma_channel_abort(dma_ch_in_cos); dma_channel_cleanup(dma_ch_in_cos); dma_channel_unclaim(dma_ch_in_cos); dma_ch_in_cos = -1; } int main() { vreg_set_voltage(VREG_VOLTAGE); set_sys_clock_khz(CLK_SYS_HZ / KHZ, true); clock_configure(clk_peri, 0, CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS, CLK_SYS_HZ, CLK_SYS_HZ); /* Enable PSU PWM mode. */ gpio_init(PSU_PIN); gpio_set_dir(PSU_PIN, GPIO_OUT); gpio_put(PSU_PIN, 1); bus_ctrl_hw->priority |= BUSCTRL_BUS_PRIORITY_DMA_W_BITS | BUSCTRL_BUS_PRIORITY_DMA_R_BITS; stdio_usb_init(); setvbuf(stdout, NULL, _IONBF, 0); queue_init(&iq_queue, sizeof(uint8_t *), IQ_QUEUE_LEN); rx_lo_init(frequency + sample_rate); dma_t_samp = dma_claim_unused_timer(true); dma_timer_set_fraction(dma_t_samp, 1, CLK_SYS_HZ / (sample_rate * DECIMATE)); while (true) { if (check_command() > 0) { static const uint32_t header[3] = { __builtin_bswap32(0x52544c30), __builtin_bswap32(5), __builtin_bswap32(NUM_GAINS) }; fwrite(header, sizeof header, 1, stdout); fflush(stdout); do_rx(); } sleep_ms(10); } }