#include <pico/stdlib.h> #include <pico/stdio_usb.h> #include <pico/multicore.h> #include <pico/util/queue.h> #include <hardware/clocks.h> #include <hardware/dma.h> #include <hardware/gpio.h> #include <hardware/pll.h> #include <hardware/vreg.h> #include <hardware/sync.h> #include <hardware/pio.h> #include <hardware/pwm.h> #include <hardware/interp.h> #include <hardware/regs/clocks.h> #include <hardware/structs/bus_ctrl.h> #include <math.h> #include <stdio.h> #include <limits.h> #include <stdlib.h> #define VREG_VOLTAGE VREG_VOLTAGE_1_20 #define CLK_SYS_HZ (300 * MHZ) #define PSU_PIN 23 #define IQ_SAMPLES 32 #define IQ_BLOCK_LEN (2 * IQ_SAMPLES) #define IQ_QUEUE_LEN 64 #define XOR_ADDR 0x1000 #define LO_COS_ACCUMULATOR (&pio1->sm[2].pinctrl) #define LO_SIN_ACCUMULATOR (&pio1->sm[3].pinctrl) #define LO_BITS_DEPTH 15 #define LO_WORDS (1 << (LO_BITS_DEPTH - 2)) static uint32_t lo_cos[LO_WORDS] __attribute__((__aligned__(1 << LO_BITS_DEPTH))); static uint32_t lo_sin[LO_WORDS] __attribute__((__aligned__(1 << LO_BITS_DEPTH))); #define DECIMATE 2 #define RX_STRIDE (2 * IQ_SAMPLES * DECIMATE) #define RX_BITS_DEPTH 12 #define RX_WORDS (1 << (RX_BITS_DEPTH - 2)) static_assert(RX_STRIDE * 4 < RX_WORDS, "RX_STRIDE * 4 < RX_WORDS"); static uint32_t rx_cos[RX_WORDS] __attribute__((__aligned__(1 << RX_BITS_DEPTH))); static uint32_t rx_sin[RX_WORDS] __attribute__((__aligned__(1 << RX_BITS_DEPTH))); #define INIT_GAIN 120 #define INIT_SAMPLE_RATE 100000 #define INIT_FREQ 94600000 #define NUM_GAINS 29 static int gains[NUM_GAINS] = { 0, 9, 14, 27, 37, 77, 87, 125, 144, 157, 166, 197, 207, 229, 254, 280, 297, 328, 338, 364, 372, 386, 402, 421, 434, 439, 445, 480, 496 }; static int gain = INIT_GAIN; static int sample_rate = INIT_SAMPLE_RATE; #define SIN_PHASE (0u) #define COS_PHASE (3u << 30) /* rx -> cp -> cos -> sin -> pio_cos -> pio_sin -> rx ... */ static int dma_ch_rx = -1; static int dma_ch_cp = -1; static int dma_ch_cos = -1; static int dma_ch_sin = -1; static int dma_ch_pio_cos = -1; static int dma_ch_pio_sin = -1; static int dma_ch_samp_trig = -1; static int dma_ch_samp_cos = -1; static int dma_ch_samp_sin = -1; static int dma_t_samp = -1; static int dma_ch_in_cos = -1; static int dma_ch_in_sin = -1; static queue_t iq_queue; static uint8_t iq_queue_buffer[IQ_QUEUE_LEN][IQ_BLOCK_LEN]; static size_t iq_queue_pos = 0; static void bias_set_delay(int delay) { delay += 200; if (delay < 0) delay = 0; if (delay >= 200) delay = 512; int bulk = delay / 16; int rest = delay % 16; if (0 == rest) { bulk -= 1; rest = 16; } if (delay > 0) { if (bulk) { pio1->instr_mem[11] = pio_encode_set(pio_x, bulk) | pio_encode_sideset(1, 0) | pio_encode_delay(rest - 1); } else { pio1->instr_mem[11] = pio_encode_jmp(10) | pio_encode_sideset(1, 0) | pio_encode_delay(rest - 1); } pio_sm_set_wrap(pio1, 0, 10, 12); } else { pio_sm_set_wrap(pio1, 0, 10, 10); pio_sm_exec(pio1, 0, pio_encode_jmp(10)); } } static void bias_init(int in_pin, int out_pin) { gpio_disable_pulls(in_pin); gpio_disable_pulls(out_pin); pio_gpio_init(pio1, out_pin); gpio_set_input_hysteresis_enabled(in_pin, false); gpio_set_drive_strength(out_pin, GPIO_DRIVE_STRENGTH_2MA); gpio_set_slew_rate(out_pin, GPIO_SLEW_RATE_SLOW); const uint16_t insn[] = { pio_encode_mov_not(pio_pins, pio_pins) | pio_encode_sideset(1, 1), pio_encode_set(pio_x, 31) | pio_encode_sideset(1, 0) | pio_encode_delay(15), pio_encode_jmp_x_dec(2) | pio_encode_sideset(1, 0) | pio_encode_delay(15), }; pio_program_t prog = { .instructions = insn, .length = sizeof(insn) / sizeof(*insn), .origin = 10, }; pio_sm_set_enabled(pio1, 0, false); pio_sm_restart(pio1, 0); pio_sm_clear_fifos(pio1, 0); if (pio_can_add_program(pio1, &prog)) pio_add_program(pio1, &prog); pio_sm_config pc = pio_get_default_sm_config(); sm_config_set_sideset(&pc, 1, false, true); sm_config_set_sideset_pins(&pc, out_pin); sm_config_set_in_pins(&pc, in_pin); sm_config_set_out_pins(&pc, out_pin, 1); sm_config_set_set_pins(&pc, out_pin, 1); sm_config_set_wrap(&pc, prog.origin, prog.origin + prog.length - 1); sm_config_set_clkdiv_int_frac(&pc, 1, 0); pio_sm_init(pio1, 0, prog.origin, &pc); pio_sm_set_consecutive_pindirs(pio1, 0, out_pin, 1, GPIO_OUT); pio_sm_set_enabled(pio1, 0, true); } static void watch_init(int in_pin) { const uint16_t insn[] = { pio_encode_in(pio_pins, 1), }; pio_program_t prog = { .instructions = insn, .length = 1, .origin = 6, }; pio_sm_set_enabled(pio1, 1, false); pio_sm_restart(pio1, 1); pio_sm_clear_fifos(pio1, 1); if (pio_can_add_program(pio1, &prog)) pio_add_program(pio1, &prog); pio_sm_config pc = pio_get_default_sm_config(); sm_config_set_in_pins(&pc, in_pin); sm_config_set_wrap(&pc, prog.origin, prog.origin + prog.length - 1); sm_config_set_clkdiv_int_frac(&pc, 1, 0); sm_config_set_fifo_join(&pc, PIO_FIFO_JOIN_RX); sm_config_set_in_shift(&pc, false, true, 32); pio_sm_init(pio1, 1, prog.origin, &pc); pio_sm_set_enabled(pio1, 1, true); } static void adder_init() { const uint16_t insn[] = { pio_encode_jmp_y_dec(1), pio_encode_out(pio_pc, 2), pio_encode_out(pio_pc, 2), pio_encode_jmp_x_dec(2), /* Avoid Y-- on wrap. */ pio_encode_out(pio_pc, 2), }; pio_program_t prog = { .instructions = insn, .length = sizeof(insn) / sizeof(*insn), .origin = 0, }; pio_sm_set_enabled(pio1, 2, false); pio_sm_set_enabled(pio1, 3, false); pio_sm_restart(pio1, 2); pio_sm_restart(pio1, 3); pio_sm_clear_fifos(pio1, 2); pio_sm_clear_fifos(pio1, 3); if (pio_can_add_program(pio1, &prog)) pio_add_program(pio1, &prog); pio_sm_config pc = pio_get_default_sm_config(); sm_config_set_wrap(&pc, prog.origin, prog.origin + prog.length - 1); sm_config_set_clkdiv_int_frac(&pc, 1, 0); sm_config_set_in_shift(&pc, false, true, 32); sm_config_set_out_shift(&pc, false, true, 32); pio_sm_init(pio1, 2, prog.origin + prog.length - 1, &pc); pio_sm_init(pio1, 3, prog.origin + prog.length - 1, &pc); pio_sm_set_enabled(pio1, 2, true); pio_sm_set_enabled(pio1, 3, true); } static void lo_generate(uint32_t *buf, double freq, uint32_t phase) { static const double base = (UINT_MAX + 1.0) / CLK_SYS_HZ; uint32_t step = base * freq; for (size_t i = 0; i < LO_WORDS; i++) { unsigned bits = 0; for (int j = 0; j < 32; j++) { bits |= phase >> 31; bits <<= 1; phase += step; } buf[i] = bits; } } static void rx_lo_init(double req_freq, bool align) { const double step_hz = (double)CLK_SYS_HZ / (4 << LO_BITS_DEPTH); double freq = req_freq; if (align) freq = round(freq / step_hz) * step_hz; lo_generate(lo_cos, freq, COS_PHASE); lo_generate(lo_sin, freq, SIN_PHASE); } static const uint32_t samp_insn[4] __attribute__((__aligned__(16))); static const uint32_t samp_insn[4] = { 0x4040, /* IN Y, 32 */ 0x4020, /* IN X, 32 */ 0xe040, /* SET Y, 0 */ 0xe020, /* SET X, 0 */ }; static uint32_t null, one = 1; static void rf_rx_start(int rx_pin, int bias_pin) { dma_ch_rx = dma_claim_unused_channel(true); dma_ch_cp = dma_claim_unused_channel(true); dma_ch_cos = dma_claim_unused_channel(true); dma_ch_sin = dma_claim_unused_channel(true); dma_ch_pio_cos = dma_claim_unused_channel(true); dma_ch_pio_sin = dma_claim_unused_channel(true); dma_ch_samp_cos = dma_claim_unused_channel(true); dma_ch_samp_sin = dma_claim_unused_channel(true); dma_ch_samp_trig = dma_claim_unused_channel(true); dma_t_samp = dma_claim_unused_timer(true); dma_channel_config dma_conf; /* Read received word into accumulator I. */ dma_conf = dma_channel_get_default_config(dma_ch_rx); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, false); channel_config_set_dreq(&dma_conf, pio_get_dreq(pio1, 1, false)); channel_config_set_chain_to(&dma_conf, dma_ch_cp); dma_channel_configure(dma_ch_rx, &dma_conf, LO_COS_ACCUMULATOR, &pio1->rxf[1], 1, false); /* Copy accumulator I to accumulator Q. */ dma_conf = dma_channel_get_default_config(dma_ch_cp); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, false); channel_config_set_chain_to(&dma_conf, dma_ch_cos); dma_channel_configure(dma_ch_cp, &dma_conf, LO_SIN_ACCUMULATOR, LO_COS_ACCUMULATOR, 1, false); /* Read lo_cos into accumulator I with XOR. */ dma_conf = dma_channel_get_default_config(dma_ch_cos); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, true); channel_config_set_write_increment(&dma_conf, false); channel_config_set_ring(&dma_conf, false, LO_BITS_DEPTH); channel_config_set_chain_to(&dma_conf, dma_ch_sin); dma_channel_configure(dma_ch_cos, &dma_conf, LO_COS_ACCUMULATOR + XOR_ADDR / 4, lo_cos, 1, false); /* Read lo_sin into accumulator Q with XOR. */ dma_conf = dma_channel_get_default_config(dma_ch_sin); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, true); channel_config_set_write_increment(&dma_conf, false); channel_config_set_ring(&dma_conf, false, LO_BITS_DEPTH); channel_config_set_chain_to(&dma_conf, dma_ch_pio_cos); dma_channel_configure(dma_ch_sin, &dma_conf, LO_SIN_ACCUMULATOR + XOR_ADDR / 4, lo_sin, 1, false); /* Copy mixed I accumulator to PIO adder I. */ dma_conf = dma_channel_get_default_config(dma_ch_pio_cos); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, false); channel_config_set_dreq(&dma_conf, pio_get_dreq(pio1, 2, true)); channel_config_set_chain_to(&dma_conf, dma_ch_pio_sin); dma_channel_configure(dma_ch_pio_cos, &dma_conf, &pio1->txf[2], LO_COS_ACCUMULATOR, 1, false); /* Copy mixed Q accumulator to PIO adder Q. */ dma_conf = dma_channel_get_default_config(dma_ch_pio_sin); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, false); channel_config_set_dreq(&dma_conf, pio_get_dreq(pio1, 3, true)); channel_config_set_chain_to(&dma_conf, dma_ch_rx); dma_channel_configure(dma_ch_pio_sin, &dma_conf, &pio1->txf[3], LO_SIN_ACCUMULATOR, 1, false); /* Pacing timer for the sampling script trigger channel. */ dma_timer_set_fraction(dma_t_samp, 1, CLK_SYS_HZ / (sample_rate * DECIMATE)); /* Sampling trigger channel. */ dma_conf = dma_channel_get_default_config(dma_ch_samp_trig); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, false); channel_config_set_dreq(&dma_conf, dma_get_timer_dreq(dma_t_samp)); channel_config_set_high_priority(&dma_conf, true); channel_config_set_chain_to(&dma_conf, dma_ch_samp_cos); dma_channel_configure(dma_ch_samp_trig, &dma_conf, &null, &one, 1, false); /* Trigger I accumulator values push. */ dma_conf = dma_channel_get_default_config(dma_ch_samp_cos); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, true); channel_config_set_write_increment(&dma_conf, false); channel_config_set_ring(&dma_conf, false, 4); channel_config_set_high_priority(&dma_conf, true); channel_config_set_chain_to(&dma_conf, dma_ch_samp_sin); dma_channel_configure(dma_ch_samp_cos, &dma_conf, &pio1->sm[2].instr, samp_insn, 4, false); /* Trigger Q accumulator values push. */ dma_conf = dma_channel_get_default_config(dma_ch_samp_sin); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, true); channel_config_set_write_increment(&dma_conf, false); channel_config_set_ring(&dma_conf, false, 4); channel_config_set_high_priority(&dma_conf, true); channel_config_set_chain_to(&dma_conf, dma_ch_samp_trig); dma_channel_configure(dma_ch_samp_sin, &dma_conf, &pio1->sm[3].instr, samp_insn, 4, false); bias_init(rx_pin, bias_pin); adder_init(); dma_channel_start(dma_ch_rx); dma_channel_start(dma_ch_samp_trig); watch_init(rx_pin); } static void rf_rx_stop(void) { pio_sm_set_enabled(pio1, 0, false); pio_sm_set_enabled(pio1, 1, false); pio_sm_set_enabled(pio1, 2, false); pio_sm_set_enabled(pio1, 3, false); pio_sm_restart(pio1, 0); pio_sm_restart(pio1, 1); pio_sm_restart(pio1, 2); pio_sm_restart(pio1, 3); pio_sm_clear_fifos(pio1, 0); pio_sm_clear_fifos(pio1, 1); pio_sm_clear_fifos(pio1, 2); pio_sm_clear_fifos(pio1, 3); sleep_us(10); dma_channel_abort(dma_ch_rx); dma_channel_abort(dma_ch_cp); dma_channel_abort(dma_ch_cos); dma_channel_abort(dma_ch_sin); dma_channel_abort(dma_ch_pio_cos); dma_channel_abort(dma_ch_pio_sin); dma_channel_abort(dma_ch_samp_cos); dma_channel_abort(dma_ch_samp_sin); dma_channel_abort(dma_ch_samp_trig); dma_channel_cleanup(dma_ch_rx); dma_channel_cleanup(dma_ch_cp); dma_channel_cleanup(dma_ch_cos); dma_channel_cleanup(dma_ch_sin); dma_channel_cleanup(dma_ch_pio_cos); dma_channel_cleanup(dma_ch_pio_sin); dma_channel_cleanup(dma_ch_samp_cos); dma_channel_cleanup(dma_ch_samp_sin); dma_channel_cleanup(dma_ch_samp_trig); dma_channel_unclaim(dma_ch_rx); dma_channel_unclaim(dma_ch_cp); dma_channel_unclaim(dma_ch_cos); dma_channel_unclaim(dma_ch_sin); dma_channel_unclaim(dma_ch_pio_cos); dma_channel_unclaim(dma_ch_pio_sin); dma_channel_unclaim(dma_ch_samp_cos); dma_channel_unclaim(dma_ch_samp_sin); dma_channel_unclaim(dma_ch_samp_trig); dma_timer_unclaim(dma_t_samp); dma_ch_rx = -1; dma_ch_cp = -1; dma_ch_cos = -1; dma_ch_sin = -1; dma_ch_pio_cos = -1; dma_ch_pio_sin = -1; dma_ch_samp_cos = -1; dma_ch_samp_sin = -1; dma_ch_samp_trig = -1; dma_t_samp = -1; } static void rf_rx(void) { uint32_t *prev_addr = rx_cos; unsigned pos = 0; int64_t dcI = 0, dcQ = 0; int prevI = 0, prevQ = 0; while (true) { if (multicore_fifo_rvalid()) { multicore_fifo_pop_blocking(); multicore_fifo_push_blocking(0); return; } uint32_t *this_addr = (uint32_t *)dma_hw->ch[dma_ch_in_cos].write_addr; while (prev_addr <= this_addr && this_addr <= prev_addr + RX_STRIDE) { this_addr = (uint32_t *)dma_hw->ch[dma_ch_in_cos].write_addr; sleep_us(1); } prev_addr += RX_STRIDE; if (prev_addr >= rx_cos + RX_WORDS) prev_addr = rx_cos; uint32_t *cos_ptr = rx_cos + pos; uint32_t *sin_ptr = rx_sin + pos; pos = (pos + RX_STRIDE) & (RX_WORDS - 1); uint8_t *block = iq_queue_buffer[iq_queue_pos]; uint8_t *blockptr = block; /* * Since every 2 samples add to either +1 or -1, * the maximum amplitude in one direction is 1/2. */ int64_t max_amplitude = CLK_SYS_HZ / 2; /* * Since the waveform is normally half of the time * above zero, we can halve once more. * * This is not perfect, so we do not max out the base * gain but keep it slightly below the maximum to make * sure we do not overshoot often. */ max_amplitude = max_amplitude / 2; /* * We are allowing the counters to only go as high * as sampling rate. */ max_amplitude /= sample_rate; for (int i = 0; i < IQ_SAMPLES; i++) { uint32_t cos_neg = *cos_ptr++; uint32_t cos_pos = *cos_ptr++; int I1 = cos_neg - cos_pos; cos_neg = *cos_ptr++; cos_pos = *cos_ptr++; int I2 = cos_neg - cos_pos; int64_t I = (prevI + I1 + I1 + I2) / 2; prevI = I2; int64_t I16 = I << 16; dcI = ((dcI << 16) - dcI + I16) >> 16; I = (I16 - dcI) >> 16; I *= gain; I /= max_amplitude; if (I > 127) I = 127; else if (I < -128) I = -128; *blockptr++ = I + 128; uint32_t sin_neg = *sin_ptr++; uint32_t sin_pos = *sin_ptr++; int Q1 = sin_neg - sin_pos; sin_neg = *sin_ptr++; sin_pos = *sin_ptr++; int Q2 = sin_neg - sin_pos; int64_t Q = (prevQ + Q1 + Q1 + Q2) / 2; prevQ = Q2; int64_t Q16 = Q << 16; dcQ = ((dcQ << 16) - dcQ + Q16) >> 16; Q = (Q16 - dcQ) >> 16; Q *= gain; Q /= max_amplitude; if (Q > 127) Q = 127; else if (Q < -128) Q = -128; *blockptr++ = (uint8_t)Q + 128; } if (queue_try_add(&iq_queue, &block)) { iq_queue_pos = (iq_queue_pos + 1) & (IQ_QUEUE_LEN - 1); } } } static void run_command(uint8_t cmd, uint32_t arg) { if (0x01 == cmd) { /* Tune to a new center frequency */ rx_lo_init(arg, true); } else if (0x02 == cmd) { /* Set the rate at which IQ sample pairs are sent */ sample_rate = arg; dma_timer_set_fraction(dma_t_samp, 1, CLK_SYS_HZ / (sample_rate * DECIMATE)); } else if (0x04 == cmd) { /* Set the tuner gain level */ gain = INIT_GAIN * powf(10.0f, 0.005f * arg); } else if (0x05 == cmd) { /* Set PPM error - hack to tweak bias strength */ bias_set_delay(arg); } else if (0x0d == cmd) { /* Set tuner gain by the tuner's gain index */ if (arg < NUM_GAINS) { gain = INIT_GAIN * powf(10.0f, 0.005f * gains[arg]); } } } static int check_command(void) { static uint8_t buf[5]; static int pos = 0; int c; while ((c = getchar_timeout_us(0)) >= 0) { if (0 == pos && 0 == c) return 0; buf[pos++] = c; if (5 == pos) { uint32_t arg = (buf[1] << 24) | (buf[2] << 16) | (buf[3] << 8) | buf[4]; run_command(buf[0], arg); pos = 0; return buf[0]; } } return -1; } static void do_rx(int rx_pin, int bias_pin) { rf_rx_start(rx_pin, bias_pin); sleep_us(100); dma_ch_in_cos = dma_claim_unused_channel(true); dma_ch_in_sin = dma_claim_unused_channel(true); dma_channel_config dma_conf; dma_conf = dma_channel_get_default_config(dma_ch_in_cos); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, true); channel_config_set_ring(&dma_conf, true, RX_BITS_DEPTH); channel_config_set_dreq(&dma_conf, pio_get_dreq(pio1, 2, false)); channel_config_set_chain_to(&dma_conf, dma_ch_in_sin); dma_channel_configure(dma_ch_in_cos, &dma_conf, rx_cos, &pio1->rxf[2], 2, false); dma_conf = dma_channel_get_default_config(dma_ch_in_sin); channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32); channel_config_set_read_increment(&dma_conf, false); channel_config_set_write_increment(&dma_conf, true); channel_config_set_ring(&dma_conf, true, RX_BITS_DEPTH); channel_config_set_dreq(&dma_conf, pio_get_dreq(pio1, 3, false)); channel_config_set_chain_to(&dma_conf, dma_ch_in_cos); dma_channel_configure(dma_ch_in_sin, &dma_conf, rx_sin, &pio1->rxf[3], 2, true); multicore_launch_core1(rf_rx); const uint8_t *block; while (queue_try_remove(&iq_queue, &block)) /* Flush the queue */; while (true) { int cmd; while ((cmd = check_command()) >= 0) if (0 == cmd) goto done; if (queue_try_remove(&iq_queue, &block)) { fwrite(block, IQ_BLOCK_LEN, 1, stdout); fflush(stdout); } } done: multicore_fifo_push_blocking(0); multicore_fifo_pop_blocking(); sleep_us(10); multicore_reset_core1(); rf_rx_stop(); dma_channel_abort(dma_ch_in_cos); dma_channel_abort(dma_ch_in_sin); dma_channel_cleanup(dma_ch_in_cos); dma_channel_cleanup(dma_ch_in_sin); dma_channel_unclaim(dma_ch_in_cos); dma_channel_unclaim(dma_ch_in_sin); dma_ch_in_cos = -1; dma_ch_in_sin = -1; } int main() { vreg_set_voltage(VREG_VOLTAGE); set_sys_clock_khz(CLK_SYS_HZ / KHZ, true); clock_configure(clk_peri, 0, CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS, CLK_SYS_HZ, CLK_SYS_HZ); /* Enable PSU PWM mode. */ gpio_init(PSU_PIN); gpio_set_dir(PSU_PIN, GPIO_OUT); gpio_put(PSU_PIN, 1); bus_ctrl_hw->priority |= BUSCTRL_BUS_PRIORITY_DMA_W_BITS | BUSCTRL_BUS_PRIORITY_DMA_R_BITS; stdio_usb_init(); setvbuf(stdout, NULL, _IONBF, 0); queue_init(&iq_queue, sizeof(uint8_t *), IQ_QUEUE_LEN); rx_lo_init(INIT_FREQ, true); while (true) { if (check_command() > 0) { static const uint32_t header[3] = { __builtin_bswap32(0x52544c30), __builtin_bswap32(5), __builtin_bswap32(NUM_GAINS) }; fwrite(header, sizeof header, 1, stdout); fflush(stdout); do_rx(10, 11); } sleep_ms(10); } }