pico-sdr/src/main.c

1124 lines
29 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (C) Jan Hamal Dvořák <mordae@anilinux.org>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <pico/stdlib.h>
#include <pico/stdio_usb.h>
#include <pico/multicore.h>
#include <pico/util/queue.h>
#include <hardware/clocks.h>
#include <hardware/dma.h>
#include <hardware/gpio.h>
#include <hardware/pll.h>
#include <hardware/vreg.h>
#include <hardware/sync.h>
#include <hardware/pio.h>
#include <hardware/pwm.h>
#include <hardware/interp.h>
#include <hardware/regs/clocks.h>
#include <hardware/structs/bus_ctrl.h>
#include <math.h>
#include <stdio.h>
#include <limits.h>
#include <stdlib.h>
#define CLK_SYS_HZ (250 * MHZ)
#define BANDWIDTH 1280000
#define DECIMATION_BITS 6
#define IQ_BLOCK_LEN 64
#define RX_SLEEP_US (DECIMATION * BANDWIDTH / (1 * MHZ) / 4)
#define DECIMATION (1 << DECIMATION_BITS)
static_assert(RX_SLEEP_US > 0, "RX_SLEEP_US must be positive");
#define XOR_ADDR 0x1000
#define LO_COS_ACCUMULATOR (&pio1->sm[2].pinctrl)
#define LO_SIN_ACCUMULATOR (&pio1->sm[3].pinctrl)
#define LO_BITS_DEPTH 13
#define LO_WORDS (1 << LO_BITS_DEPTH)
static uint32_t lo_cos[LO_WORDS] __attribute__((__aligned__(LO_WORDS * 4)));
static uint32_t lo_sin[LO_WORDS] __attribute__((__aligned__(LO_WORDS * 4)));
#define RX_BITS_DEPTH (DECIMATION_BITS + 2)
#define RX_WORDS (1 << RX_BITS_DEPTH)
static uint32_t rx_cos[RX_WORDS] __attribute__((__aligned__(RX_WORDS * 4)));
static uint32_t rx_sin[RX_WORDS] __attribute__((__aligned__(RX_WORDS * 4)));
#define SIN_PHASE (UINT_MAX / 4)
#define COS_PHASE (0)
/* rx -> cp -> cos -> sin -> pio_cos -> pio_sin -> rx ... */
static int dma_ch_rx = -1;
static int dma_ch_cp = -1;
static int dma_ch_cos = -1;
static int dma_ch_sin = -1;
static int dma_ch_pio_cos = -1;
static int dma_ch_pio_sin = -1;
static int dma_ch_samp_trig = -1;
static int dma_ch_samp_cos = -1;
static int dma_ch_samp_sin = -1;
static int dma_t_samp = -1;
static int dma_ch_in_cos = -1;
static int dma_ch_in_sin = -1;
static int dma_ch_tx_cos = -1;
static queue_t iq_queue;
static int gap = 0;
static int agc = 0;
#define PSU_PIN 23
static void bias_init(int in_pin, int out_pin)
{
gpio_disable_pulls(in_pin);
gpio_disable_pulls(out_pin);
pio_gpio_init(pio1, out_pin);
gpio_set_input_hysteresis_enabled(in_pin, false);
gpio_set_input_hysteresis_enabled(out_pin, false);
gpio_set_drive_strength(out_pin, GPIO_DRIVE_STRENGTH_2MA);
gpio_set_slew_rate(out_pin, GPIO_SLEW_RATE_SLOW);
const uint16_t insn[] = {
pio_encode_mov_not(pio_pins, pio_pins) | pio_encode_sideset(1, 1),
pio_encode_nop() | pio_encode_sideset(1, 0) | pio_encode_delay(15),
pio_encode_nop() | pio_encode_sideset(1, 0) | pio_encode_delay(15),
pio_encode_nop() | pio_encode_sideset(1, 0) | pio_encode_delay(15),
};
pio_program_t prog = {
.instructions = insn,
.length = sizeof(insn) / sizeof(*insn),
.origin = 16,
};
pio_sm_set_enabled(pio1, 0, false);
pio_sm_restart(pio1, 0);
pio_sm_clear_fifos(pio1, 0);
if (pio_can_add_program(pio1, &prog))
pio_add_program(pio1, &prog);
pio_sm_config pc = pio_get_default_sm_config();
sm_config_set_sideset(&pc, 1, false, true);
sm_config_set_sideset_pins(&pc, out_pin);
sm_config_set_in_pins(&pc, in_pin);
sm_config_set_out_pins(&pc, out_pin, 1);
sm_config_set_set_pins(&pc, out_pin, 1);
sm_config_set_wrap(&pc, prog.origin, prog.origin + prog.length - 1);
sm_config_set_clkdiv_int_frac(&pc, 1, 0);
pio_sm_init(pio1, 0, prog.origin, &pc);
pio_sm_set_consecutive_pindirs(pio1, 0, out_pin, 1, GPIO_OUT);
pio_sm_set_enabled(pio1, 0, true);
}
static void watch_init(int in_pin)
{
gpio_disable_pulls(in_pin);
gpio_set_input_hysteresis_enabled(in_pin, false);
const uint16_t insn[] = {
pio_encode_in(pio_pins, 1),
};
pio_program_t prog = {
.instructions = insn,
.length = 1,
.origin = 31,
};
pio_sm_set_enabled(pio1, 1, false);
pio_sm_restart(pio1, 1);
pio_sm_clear_fifos(pio1, 1);
if (pio_can_add_program(pio1, &prog))
pio_add_program(pio1, &prog);
pio_sm_config pc = pio_get_default_sm_config();
sm_config_set_in_pins(&pc, in_pin);
sm_config_set_wrap(&pc, prog.origin, prog.origin + prog.length - 1);
sm_config_set_clkdiv_int_frac(&pc, 1, 0);
sm_config_set_fifo_join(&pc, PIO_FIFO_JOIN_RX);
sm_config_set_in_shift(&pc, false, true, 32);
pio_sm_init(pio1, 1, prog.origin, &pc);
pio_sm_set_enabled(pio1, 1, true);
}
static void send_init(int out_pin)
{
gpio_disable_pulls(out_pin);
pio_gpio_init(pio1, out_pin);
gpio_set_drive_strength(out_pin, GPIO_DRIVE_STRENGTH_2MA);
gpio_set_slew_rate(out_pin, GPIO_SLEW_RATE_SLOW);
const uint16_t insn[] = {
pio_encode_out(pio_pins, 1) | pio_encode_sideset(1, 1),
};
pio_program_t prog = {
.instructions = insn,
.length = 1,
.origin = 30,
};
pio_sm_set_enabled(pio1, 1, false);
pio_sm_restart(pio1, 1);
pio_sm_clear_fifos(pio1, 1);
if (pio_can_add_program(pio1, &prog))
pio_add_program(pio1, &prog);
pio_sm_config pc = pio_get_default_sm_config();
sm_config_set_sideset(&pc, 1, false, true);
sm_config_set_sideset_pins(&pc, out_pin);
sm_config_set_out_pins(&pc, out_pin, 1);
sm_config_set_set_pins(&pc, out_pin, 1);
sm_config_set_wrap(&pc, prog.origin, prog.origin + prog.length - 1);
sm_config_set_clkdiv_int_frac(&pc, 1, 0);
sm_config_set_fifo_join(&pc, PIO_FIFO_JOIN_TX);
sm_config_set_out_shift(&pc, false, true, 32);
pio_sm_init(pio1, 1, prog.origin, &pc);
pio_sm_set_consecutive_pindirs(pio1, 1, out_pin, 1, GPIO_OUT);
pio_sm_set_enabled(pio1, 1, true);
}
static void adder_init()
{
const uint16_t insn[] = {
pio_encode_jmp_y_dec(1),
pio_encode_out(pio_pc, 2),
pio_encode_out(pio_pc, 2),
pio_encode_jmp_x_dec(2),
/* Avoid Y-- on wrap. */
pio_encode_out(pio_pc, 2),
};
pio_program_t prog = {
.instructions = insn,
.length = sizeof(insn) / sizeof(*insn),
.origin = 0,
};
pio_sm_set_enabled(pio1, 2, false);
pio_sm_set_enabled(pio1, 3, false);
pio_sm_restart(pio1, 2);
pio_sm_restart(pio1, 3);
pio_sm_clear_fifos(pio1, 2);
pio_sm_clear_fifos(pio1, 3);
if (pio_can_add_program(pio1, &prog))
pio_add_program(pio1, &prog);
pio_sm_config pc = pio_get_default_sm_config();
sm_config_set_wrap(&pc, prog.origin, prog.origin + prog.length - 1);
sm_config_set_clkdiv_int_frac(&pc, 1, 0);
sm_config_set_in_shift(&pc, false, true, 32);
sm_config_set_out_shift(&pc, false, true, 32);
pio_sm_init(pio1, 2, prog.origin + prog.length - 1, &pc);
pio_sm_init(pio1, 3, prog.origin + prog.length - 1, &pc);
pio_sm_set_enabled(pio1, 2, true);
pio_sm_set_enabled(pio1, 3, true);
}
inline static float lo_round_freq(size_t bits, float req_freq)
{
const double step_hz = (double)CLK_SYS_HZ / bits;
return round(req_freq / step_hz) * step_hz;
}
static void lo_generate(uint32_t *buf, size_t len, double freq, unsigned phase)
{
unsigned step = ((double)UINT_MAX + 1.0) / (double)CLK_SYS_HZ * freq;
unsigned accum = phase;
for (size_t i = 0; i < len; i++) {
unsigned bits = 0;
for (int j = 0; j < 32; j++) {
bits |= accum >> 31;
bits <<= 1;
accum += step;
}
buf[i] = bits;
}
}
static float rx_lo_init(double req_freq)
{
float freq = lo_round_freq(LO_WORDS * 32, req_freq);
lo_generate(lo_cos, LO_WORDS, freq, COS_PHASE);
lo_generate(lo_sin, LO_WORDS, freq, SIN_PHASE);
return freq;
}
static float tx_fsk_lo_init(float req_freq, float separation)
{
float hi = lo_round_freq(LO_WORDS * 32, req_freq + separation / 2);
float lo = lo_round_freq(LO_WORDS * 32, hi - separation);
lo_generate(lo_cos, LO_WORDS, hi, COS_PHASE);
lo_generate(lo_sin, LO_WORDS, lo, SIN_PHASE);
return (hi + lo) / 2.0f;
}
inline static __unused int cheap_atan2(int y, int x)
{
if (y > 0) {
if (x > 0) {
if (y > x)
return 16 << 24;
return 0;
} else {
if (-x > y)
return 48 << 24;
return 32 << 24;
}
} else {
if (x < 0) {
if (y < x)
return 80 << 24;
return 64 << 24;
} else {
if (x > -y)
return 112 << 24;
return 96 << 24;
}
}
}
inline static __unused int cheap_angle_diff(int angle1, int angle2)
{
int diff = angle2 - angle1;
if (diff > INT_MAX / 2)
return diff - INT_MAX;
if (diff < INT_MIN / 2)
return diff + INT_MAX;
return diff;
}
static const uint32_t samp_insn[] __attribute__((__aligned__(16))) = {
0x4020, /* IN X, 32 */
0x4040, /* IN Y, 32 */
0xe020, /* SET X, 0 */
0xe040, /* SET Y, 0 */
};
static uint32_t null, one = 1;
static float rf_rx_start(int rx_pin, int bias_pin, float freq, int frac_num, int frac_denom)
{
dma_ch_rx = dma_claim_unused_channel(true);
dma_ch_cp = dma_claim_unused_channel(true);
dma_ch_cos = dma_claim_unused_channel(true);
dma_ch_sin = dma_claim_unused_channel(true);
dma_ch_pio_cos = dma_claim_unused_channel(true);
dma_ch_pio_sin = dma_claim_unused_channel(true);
dma_ch_samp_cos = dma_claim_unused_channel(true);
dma_ch_samp_sin = dma_claim_unused_channel(true);
dma_ch_samp_trig = dma_claim_unused_channel(true);
dma_t_samp = dma_claim_unused_timer(true);
dma_channel_config dma_conf;
/* Read received word into accumulator I. */
dma_conf = dma_channel_get_default_config(dma_ch_rx);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, false);
channel_config_set_write_increment(&dma_conf, false);
channel_config_set_dreq(&dma_conf, pio_get_dreq(pio1, 1, false));
channel_config_set_chain_to(&dma_conf, dma_ch_cp);
dma_channel_configure(dma_ch_rx, &dma_conf, LO_COS_ACCUMULATOR, &pio1->rxf[1], 1, false);
/* Copy accumulator I to accumulator Q. */
dma_conf = dma_channel_get_default_config(dma_ch_cp);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, false);
channel_config_set_write_increment(&dma_conf, false);
channel_config_set_chain_to(&dma_conf, dma_ch_cos);
dma_channel_configure(dma_ch_cp, &dma_conf, LO_SIN_ACCUMULATOR, LO_COS_ACCUMULATOR, 1,
false);
/* Read lo_cos into accumulator I with XOR. */
dma_conf = dma_channel_get_default_config(dma_ch_cos);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, true);
channel_config_set_write_increment(&dma_conf, false);
channel_config_set_ring(&dma_conf, false, LO_BITS_DEPTH + 2);
channel_config_set_chain_to(&dma_conf, dma_ch_sin);
dma_channel_configure(dma_ch_cos, &dma_conf, LO_COS_ACCUMULATOR + XOR_ADDR / 4, lo_cos, 1,
false);
/* Read lo_sin into accumulator Q with XOR. */
dma_conf = dma_channel_get_default_config(dma_ch_sin);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, true);
channel_config_set_write_increment(&dma_conf, false);
channel_config_set_ring(&dma_conf, false, LO_BITS_DEPTH + 2);
channel_config_set_chain_to(&dma_conf, dma_ch_pio_cos);
dma_channel_configure(dma_ch_sin, &dma_conf, LO_SIN_ACCUMULATOR + XOR_ADDR / 4, lo_sin, 1,
false);
/* Copy mixed I accumulator to PIO adder I. */
dma_conf = dma_channel_get_default_config(dma_ch_pio_cos);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, false);
channel_config_set_write_increment(&dma_conf, false);
channel_config_set_dreq(&dma_conf, pio_get_dreq(pio1, 2, true));
channel_config_set_chain_to(&dma_conf, dma_ch_pio_sin);
dma_channel_configure(dma_ch_pio_cos, &dma_conf, &pio1->txf[2], LO_COS_ACCUMULATOR, 1,
false);
/* Copy mixed Q accumulator to PIO adder Q. */
dma_conf = dma_channel_get_default_config(dma_ch_pio_sin);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, false);
channel_config_set_write_increment(&dma_conf, false);
channel_config_set_dreq(&dma_conf, pio_get_dreq(pio1, 3, true));
channel_config_set_chain_to(&dma_conf, dma_ch_rx);
dma_channel_configure(dma_ch_pio_sin, &dma_conf, &pio1->txf[3], LO_SIN_ACCUMULATOR, 1,
false);
/* Pacing timer for the sampling script trigger channel. */
dma_timer_set_fraction(dma_t_samp, frac_num, frac_denom);
/* Sampling trigger channel. */
dma_conf = dma_channel_get_default_config(dma_ch_samp_trig);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, false);
channel_config_set_write_increment(&dma_conf, false);
channel_config_set_dreq(&dma_conf, dma_get_timer_dreq(dma_t_samp));
channel_config_set_chain_to(&dma_conf, dma_ch_samp_cos);
dma_channel_configure(dma_ch_samp_trig, &dma_conf, &null, &one, 1, false);
/* Trigger I accumulator values push. */
dma_conf = dma_channel_get_default_config(dma_ch_samp_cos);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, true);
channel_config_set_write_increment(&dma_conf, false);
channel_config_set_ring(&dma_conf, false, 4);
channel_config_set_chain_to(&dma_conf, dma_ch_samp_sin);
dma_channel_configure(dma_ch_samp_cos, &dma_conf, &pio1->sm[2].instr, samp_insn, 4, false);
/* Trigger Q accumulator values push. */
dma_conf = dma_channel_get_default_config(dma_ch_samp_sin);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, true);
channel_config_set_write_increment(&dma_conf, false);
channel_config_set_ring(&dma_conf, false, 4);
channel_config_set_chain_to(&dma_conf, dma_ch_samp_trig);
dma_channel_configure(dma_ch_samp_sin, &dma_conf, &pio1->sm[3].instr, samp_insn, 4, false);
bias_init(rx_pin, bias_pin);
adder_init();
float actual = rx_lo_init(freq);
dma_channel_start(dma_ch_rx);
dma_channel_start(dma_ch_samp_trig);
watch_init(rx_pin);
return actual;
}
static void rf_rx_stop(void)
{
pio_sm_set_enabled(pio1, 0, false);
pio_sm_set_enabled(pio1, 1, false);
pio_sm_set_enabled(pio1, 2, false);
pio_sm_set_enabled(pio1, 3, false);
pio_sm_restart(pio1, 0);
pio_sm_restart(pio1, 1);
pio_sm_restart(pio1, 2);
pio_sm_restart(pio1, 3);
pio_sm_clear_fifos(pio1, 0);
pio_sm_clear_fifos(pio1, 1);
pio_sm_clear_fifos(pio1, 2);
pio_sm_clear_fifos(pio1, 3);
sleep_us(10);
dma_channel_abort(dma_ch_rx);
dma_channel_abort(dma_ch_cp);
dma_channel_abort(dma_ch_cos);
dma_channel_abort(dma_ch_sin);
dma_channel_abort(dma_ch_pio_cos);
dma_channel_abort(dma_ch_pio_sin);
dma_channel_abort(dma_ch_samp_cos);
dma_channel_abort(dma_ch_samp_sin);
dma_channel_abort(dma_ch_samp_trig);
dma_channel_cleanup(dma_ch_rx);
dma_channel_cleanup(dma_ch_cp);
dma_channel_cleanup(dma_ch_cos);
dma_channel_cleanup(dma_ch_sin);
dma_channel_cleanup(dma_ch_pio_cos);
dma_channel_cleanup(dma_ch_pio_sin);
dma_channel_cleanup(dma_ch_samp_cos);
dma_channel_cleanup(dma_ch_samp_sin);
dma_channel_cleanup(dma_ch_samp_trig);
dma_channel_unclaim(dma_ch_rx);
dma_channel_unclaim(dma_ch_cp);
dma_channel_unclaim(dma_ch_cos);
dma_channel_unclaim(dma_ch_sin);
dma_channel_unclaim(dma_ch_pio_cos);
dma_channel_unclaim(dma_ch_pio_sin);
dma_channel_unclaim(dma_ch_samp_cos);
dma_channel_unclaim(dma_ch_samp_sin);
dma_channel_unclaim(dma_ch_samp_trig);
dma_timer_unclaim(dma_t_samp);
dma_ch_rx = -1;
dma_ch_cp = -1;
dma_ch_cos = -1;
dma_ch_sin = -1;
dma_ch_pio_cos = -1;
dma_ch_pio_sin = -1;
dma_ch_samp_cos = -1;
dma_ch_samp_sin = -1;
dma_ch_samp_trig = -1;
dma_t_samp = -1;
}
static void rf_tx_start(int tx_pin)
{
send_init(tx_pin);
dma_ch_tx_cos = dma_claim_unused_channel(true);
dma_channel_config dma_conf = dma_channel_get_default_config(dma_ch_tx_cos);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, true);
channel_config_set_write_increment(&dma_conf, false);
channel_config_set_ring(&dma_conf, false, LO_BITS_DEPTH + 2);
channel_config_set_dreq(&dma_conf, pio_get_dreq(pio1, 1, true));
dma_channel_configure(dma_ch_tx_cos, &dma_conf, &pio1->txf[1], lo_cos, UINT_MAX, true);
}
static void rf_tx_stop()
{
puts("Stopping TX...");
pio_sm_set_enabled(pio1, 1, false);
pio_sm_restart(pio1, 1);
pio_sm_clear_fifos(pio1, 1);
puts("Stopping DMA...");
dma_channel_abort(dma_ch_tx_cos);
dma_channel_cleanup(dma_ch_tx_cos);
dma_channel_unclaim(dma_ch_tx_cos);
dma_ch_tx_cos = -1;
}
static void rf_rx(void)
{
const int amp_max = CLK_SYS_HZ / 2 / BANDWIDTH * DECIMATION;
/* Scale down 2× to accomodate for jitter. */
const int amp_scale = INT_MAX / amp_max / 2;
static int8_t block[IQ_BLOCK_LEN];
uint32_t prev_transfers = dma_hw->ch[dma_ch_in_cos].transfer_count;
unsigned pos = 0;
static int lpIh1[DECIMATION];
static int lpQh1[DECIMATION];
int lpIa1 = 0;
int lpQa1 = 0;
static int lpIh2[DECIMATION];
static int lpQh2[DECIMATION];
int lpIa2 = 0;
int lpQa2 = 0;
static int lpIh3[DECIMATION];
static int lpQh3[DECIMATION];
int lpIa3 = 0;
int lpQa3 = 0;
int64_t dcI = 0, dcQ = 0;
while (true) {
if (multicore_fifo_rvalid()) {
multicore_fifo_pop_blocking();
multicore_fifo_push_blocking(0);
return;
}
int8_t *blockptr = block;
for (int i = 0; i < IQ_BLOCK_LEN / 2; i++) {
int delta = prev_transfers - dma_hw->ch[dma_ch_in_cos].transfer_count;
gap = 2 * DECIMATION - delta;
while (delta < 2 * DECIMATION) {
delta = prev_transfers - dma_hw->ch[dma_ch_in_cos].transfer_count;
sleep_us(RX_SLEEP_US);
}
prev_transfers -= 2 * DECIMATION;
uint32_t *cos_ptr = rx_cos + pos;
uint32_t *sin_ptr = rx_sin + pos;
pos = (pos + 2 * DECIMATION) & (RX_WORDS - 1);
int dI = 0;
int dQ = 0;
for (int d = 0; d < DECIMATION; d++) {
uint32_t cos_pos = *cos_ptr++;
uint32_t cos_neg = *cos_ptr++;
uint32_t sin_pos = *sin_ptr++;
uint32_t sin_neg = *sin_ptr++;
int I = cos_neg - cos_pos;
int Q = sin_neg - sin_pos;
/* Scale up before filtering. */
I = I * amp_scale;
Q = Q * amp_scale;
int lpP = d & (DECIMATION - 1);
lpIa1 += I - lpIh1[lpP];
lpQa1 += Q - lpQh1[lpP];
lpIh1[lpP] = I;
lpQh1[lpP] = Q;
I = lpIa1 / DECIMATION;
Q = lpQa1 / DECIMATION;
lpIa2 += I - lpIh2[lpP];
lpQa2 += Q - lpQh2[lpP];
lpIh2[lpP] = I;
lpQh2[lpP] = Q;
I = lpIa2 / DECIMATION;
Q = lpQa2 / DECIMATION;
lpIa3 += I - lpIh3[lpP];
lpQa3 += Q - lpQh3[lpP];
lpIh3[lpP] = I;
lpQh3[lpP] = Q;
I = lpIa3 / DECIMATION;
Q = lpQa3 / DECIMATION;
dI += I;
dQ += Q;
}
/*
* Original dI/dQ are scaled to 32 bits.
* These are part of DC removal alpha.
*/
int64_t dI19 = (int64_t)dI << 19;
int64_t dQ19 = (int64_t)dQ << 19;
dcI = ((dcI << 13) - dcI + dI19) >> 13;
dcQ = ((dcQ << 13) - dcQ + dQ19) >> 13;
dI = (dI19 - dcI) >> 19;
dQ = (dQ19 - dcQ) >> 19;
/* Slowly decay AGC amplitude. */
agc -= (agc >> 16) | 1;
if (abs(dI) > agc)
agc = abs(dI);
if (abs(dQ) > agc)
agc = abs(dQ);
int agc_div = (agc >> 7) + (agc >> 14);
*blockptr++ = dI / agc_div;
*blockptr++ = dQ / agc_div;
}
if (!queue_try_add(&iq_queue, block)) {
puts("queue overflow");
}
}
}
inline static int icopysign(int x, int s)
{
return s >= 0 ? abs(x) : -abs(x);
}
static void __unused plot_IQ(int I, int Q)
{
int mag = I ? icopysign(32 - __builtin_clz(abs(I)), I) : 0;
if (mag < 0) {
for (int l = -mag; l < 8; l++)
putchar(' ');
for (int l = 0; l < -mag; l++)
putchar('#');
printf("%8s", "");
} else {
printf("%8s", "");
for (int l = 0; l < mag; l++)
putchar('#');
for (int l = mag; l < 8; l++)
putchar(' ');
}
mag = Q ? icopysign(32 - __builtin_clz(abs(Q)), Q) : 0;
if (mag < 0) {
for (int l = -mag; l < 8; l++)
putchar(' ');
for (int l = 0; l < -mag; l++)
putchar('#');
printf("%8s", "");
} else {
printf("%8s", "");
for (int l = 0; l < mag; l++)
putchar('#');
for (int l = mag; l < 8; l++)
putchar(' ');
}
}
static void do_rx(int rx_pin, int bias_pin, float freq, char mode)
{
float actual = rf_rx_start(rx_pin, bias_pin, freq, 1, CLK_SYS_HZ / BANDWIDTH);
sleep_us(100);
dma_ch_in_cos = dma_claim_unused_channel(true);
dma_ch_in_sin = dma_claim_unused_channel(true);
dma_channel_config dma_conf;
dma_conf = dma_channel_get_default_config(dma_ch_in_cos);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, false);
channel_config_set_write_increment(&dma_conf, true);
channel_config_set_ring(&dma_conf, true, RX_BITS_DEPTH + 2);
channel_config_set_dreq(&dma_conf, pio_get_dreq(pio1, 2, false));
dma_channel_configure(dma_ch_in_cos, &dma_conf, rx_cos, &pio1->rxf[2], UINT_MAX, false);
dma_conf = dma_channel_get_default_config(dma_ch_in_sin);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, false);
channel_config_set_write_increment(&dma_conf, true);
channel_config_set_ring(&dma_conf, true, RX_BITS_DEPTH + 2);
channel_config_set_dreq(&dma_conf, pio_get_dreq(pio1, 3, false));
dma_channel_configure(dma_ch_in_sin, &dma_conf, rx_sin, &pio1->rxf[3], UINT_MAX, false);
dma_start_channel_mask((1 << dma_ch_in_sin) | (1 << dma_ch_in_cos));
multicore_launch_core1(rf_rx);
printf("Frequency: %.0f\n", actual);
static int8_t block[IQ_BLOCK_LEN];
while (queue_try_remove(&iq_queue, block))
/* Flush the queue */;
if ('b' == mode) {
setvbuf(stdout, NULL, _IONBF, 0);
putchar('$');
}
while (true) {
int c = getchar_timeout_us(0);
if ('\r' == c)
break;
if (queue_try_remove(&iq_queue, block)) {
if ('b' == mode) {
fwrite(block, sizeof block, 1, stdout);
fflush(stdout);
} else {
float rssi =
10.0f * log10f(powf((float)agc / (float)INT_MAX * 2, 2));
for (int i = 0; i < IQ_BLOCK_LEN / 2; i += 8) {
int I = block[i * 2];
int Q = block[i * 2 + 1];
printf("%+4i | %+5.1f dBm | %+4i %+4i | ",
RX_WORDS / 2 + gap, rssi, I, Q);
plot_IQ(I, Q);
putchar('\n');
}
}
}
}
putchar('\n');
puts("Stopping core1...");
multicore_fifo_push_blocking(0);
multicore_fifo_pop_blocking();
sleep_us(10);
multicore_reset_core1();
puts("Stopping RX...");
rf_rx_stop();
puts("Stopping readout DMAs...");
dma_channel_abort(dma_ch_in_cos);
dma_channel_abort(dma_ch_in_sin);
dma_channel_cleanup(dma_ch_in_cos);
dma_channel_cleanup(dma_ch_in_sin);
dma_channel_unclaim(dma_ch_in_cos);
dma_channel_unclaim(dma_ch_in_sin);
dma_ch_in_cos = -1;
dma_ch_in_sin = -1;
puts("Done.");
}
static void command(const char *cmd)
{
static char tmp[83];
int n, x;
float f, g;
if (1 == sscanf(cmd, " help %[\a]", tmp)) {
puts("help - this help");
puts("drive N X - set GPIO pin drive strength");
puts("bias I O - output negated I to O");
puts("rx N FREQ - receive on pin N");
puts("brx N FREQ - receive on pin N, binary output");
puts("bpsk N FREQ - transmit on pin N with BPSK");
puts("fsk N FREQ - transmit on pin N with FSK");
puts("ook N FREQ - transmit on pin N with OOK");
puts("sweep N F G S - sweep from F to G with given step");
puts("noise N - transmit random noise");
return;
}
if (3 == sscanf(cmd, " drive %i %i %[\a]", &n, &x, tmp)) {
if ((x < 0) || (x > 3)) {
puts("invalid drive strength, use 0-3 for 2, 4, 8, 12 mA");
return;
}
gpio_set_drive_strength(n, x);
static int strength[] = { 2, 4, 8, 12 };
printf("gpio%i: %i mA\n", n, strength[x]);
return;
}
if (3 == sscanf(cmd, " bias %i %i %[\a]", &n, &x, tmp)) {
bias_init(n, x);
return;
}
if (4 == sscanf(cmd, " rx %i %i %f %[\a]", &n, &x, &f, tmp)) {
do_rx(n, x, f, 'a');
return;
}
if (4 == sscanf(cmd, " brx %i %i %f %[\a]", &n, &x, &f, tmp)) {
do_rx(n, x, f, 'b');
return;
}
if (3 == sscanf(cmd, " bpsk %i %f %[\a]", &n, &f, tmp)) {
float actual = rx_lo_init(f);
printf("Frequency: %.0f\n", actual);
rf_tx_start(n);
puts("Transmitting, press ENTER to stop.");
bool phase = false;
const double step_hz = (double)CLK_SYS_HZ / (LO_WORDS * 32);
while (true) {
int c = getchar_timeout_us(10000);
if ('\r' == c) {
break;
} else if (' ' == c) {
phase = !phase;
gpio_set_outover(n, phase);
} else if ('+' == c) {
actual = rx_lo_init(actual + step_hz);
printf("Frequency: %.0f\n", actual);
} else if ('-' == c) {
actual = rx_lo_init(actual - step_hz);
printf("Frequency: %.0f\n", actual);
} else if ((c >= '1') && (c <= '9')) {
for (int i = 0; i < 1000; i++) {
phase = !phase;
gpio_set_outover(n, phase);
sleep_us(1000 / (c - '0'));
}
}
}
rf_tx_stop();
gpio_set_outover(n, 0);
puts("Done.");
return;
}
if (4 == sscanf(cmd, " fsk %i %f %f %[\a]", &n, &f, &g, tmp)) {
g = lo_round_freq(LO_WORDS * 32, g);
f = tx_fsk_lo_init(f, g);
printf("Frequency: %.0f +/- %.f\n", f, g / 2.0f);
rf_tx_start(n);
puts("Transmitting, press ENTER to stop.");
bool high = true;
const double step_hz = (double)CLK_SYS_HZ / (LO_WORDS * 32);
while (true) {
int c = getchar_timeout_us(10000);
if ('\r' == c) {
break;
} else if (' ' == c) {
high = !high;
if (high) {
dma_hw->ch[dma_ch_tx_cos].read_addr = (uint32_t)lo_cos;
} else {
dma_hw->ch[dma_ch_tx_cos].read_addr = (uint32_t)lo_sin;
}
} else if ('+' == c) {
f = tx_fsk_lo_init(f + step_hz, g);
printf("Frequency: %.0f +/- %.f\n", f, g / 2.0f);
} else if ('-' == c) {
f = tx_fsk_lo_init(f - step_hz, g);
printf("Frequency: %.0f +/- %.f\n", f, g / 2.0f);
} else if ((c >= '1') && (c <= '9')) {
for (int i = 0; i < 1000; i++) {
high = !high;
if (high) {
dma_hw->ch[dma_ch_tx_cos].read_addr =
(uint32_t)lo_cos;
} else {
dma_hw->ch[dma_ch_tx_cos].read_addr =
(uint32_t)lo_sin;
}
sleep_us(1000 / (c - '0'));
}
}
}
rf_tx_stop();
puts("Done.");
return;
}
if (3 == sscanf(cmd, " ook %i %f %[\a]", &n, &f, tmp)) {
float actual = rx_lo_init(f);
printf("Frequency: %.0f\n", actual);
rf_tx_start(n);
puts("Transmitting, press ENTER to stop.");
bool off = false;
const double step_hz = (double)CLK_SYS_HZ / (LO_WORDS * 32);
while (true) {
int c = getchar_timeout_us(10000);
if ('\r' == c) {
break;
} else if (' ' == c) {
off = !off;
gpio_set_oeover(n, off * 2);
} else if ('+' == c) {
actual = rx_lo_init(actual + step_hz);
printf("Frequency: %.0f\n", actual);
} else if ('-' == c) {
actual = rx_lo_init(actual - step_hz);
printf("Frequency: %.0f\n", actual);
} else if ((c >= '1') && (c <= '9')) {
for (int i = 0; i < 1000; i++) {
off = !off;
gpio_set_oeover(n, off * 2);
sleep_us(1000 / (c - '0'));
}
}
}
rf_tx_stop();
gpio_set_oeover(n, 0);
puts("Done.");
return;
}
if (5 == sscanf(cmd, " sweep %i %f %f %i %[\a]", &n, &f, &g, &x, tmp)) {
const float step_hz = (float)CLK_SYS_HZ / (LO_WORDS * 32);
const float start = roundf(f / step_hz) * step_hz;
const float stop = roundf(g / step_hz) * step_hz;
int steps = roundf((stop - start) / step_hz);
for (int i = 0; i < LO_WORDS; i++)
lo_cos[i] = 0;
rf_tx_start(n);
for (int i = 0; i < steps; i += x) {
int c = getchar_timeout_us(10000);
if ('\r' == c)
break;
float actual = rx_lo_init(start + i * step_hz);
printf("Frequency: %.0f\n", actual);
}
rf_tx_stop();
puts("Done.");
return;
}
if (2 == sscanf(cmd, " noise %i %[\a]", &n, tmp)) {
for (int i = 0; i < LO_WORDS; i++)
lo_cos[i] = rand();
rf_tx_start(n);
puts("Transmitting noise, press ENTER to stop.");
while (true) {
int c = getchar_timeout_us(100);
if ('\r' == c)
break;
for (int i = 0; i < LO_WORDS; i++)
lo_cos[i] = rand();
}
rf_tx_stop();
puts("Done.");
return;
}
puts("unknown command");
}
int main()
{
vreg_set_voltage(VREG_VOLTAGE_DEFAULT);
set_sys_clock_khz(CLK_SYS_HZ / KHZ, true);
clock_configure(clk_peri, 0, CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS, CLK_SYS_HZ,
CLK_SYS_HZ);
/* Enable PSU PWM mode. */
gpio_init(PSU_PIN);
gpio_set_dir(PSU_PIN, GPIO_OUT);
gpio_put(PSU_PIN, 1);
bus_ctrl_hw->priority |= BUSCTRL_BUS_PRIORITY_DMA_W_BITS | BUSCTRL_BUS_PRIORITY_DMA_R_BITS;
stdio_usb_init();
for (int i = 0; i < 30; i++) {
if (stdio_usb_connected())
break;
sleep_ms(100);
}
printf("\nPuppet Online!\n");
printf("clk_sys = %10.6f MHz\n", (float)clock_get_hz(clk_sys) / MHZ);
queue_init(&iq_queue, IQ_BLOCK_LEN * sizeof(int8_t), 256);
static char cmd[83];
int cmdlen = 0;
printf("> ");
while (true) {
int c;
while ((c = getchar_timeout_us(10000)) >= 0) {
if ('\r' == c) {
/* Enter */
} else if ((8 == c) && (cmdlen > 0)) {
cmd[--cmdlen] = 0;
printf("\b \b");
} else if ((' ' == c) && (0 == cmdlen)) {
/* No leading spaces. */
continue;
} else if (c < ' ') {
continue;
} else {
cmd[cmdlen++] = c;
putchar(c);
}
if (('\r' == c) || cmdlen == 80) {
printf("\n");
if (cmdlen > 0) {
cmd[cmdlen] = '\a';
cmd[cmdlen + 1] = 0;
command(cmd);
cmdlen = 0;
}
printf("> ");
}
}
}
}