pico-sdr/src/main.c

662 lines
16 KiB
C

#include <pico/stdlib.h>
#include <pico/stdio_usb.h>
#include <pico/multicore.h>
#include <pico/util/queue.h>
#include <hardware/clocks.h>
#include <hardware/dma.h>
#include <hardware/gpio.h>
#include <hardware/pll.h>
#include <hardware/vreg.h>
#include <hardware/sync.h>
#include <hardware/pio.h>
#include <hardware/pwm.h>
#include <hardware/interp.h>
#include <hardware/regs/clocks.h>
#include <hardware/structs/bus_ctrl.h>
#include <math.h>
#include <stdio.h>
#include <limits.h>
#include <stdlib.h>
#define VREG_VOLTAGE VREG_VOLTAGE_1_20
#define CLK_SYS_HZ (300 * MHZ)
#define LO_PIN 9
#define RX_PIN 10
#define FB_PIN 11
#define PSU_PIN 23
#define PIO pio1
#define LO_SM 0
#define FB_SM 1
#define RX_SM 2
#define AD_SM 3
#define IQ_SAMPLES 32
#define IQ_BLOCK_LEN (2 * IQ_SAMPLES)
#define IQ_QUEUE_LEN 4
#define LO_BITS_DEPTH 15
#define LO_WORDS (1 << (LO_BITS_DEPTH - 2))
static uint32_t lo_cos[LO_WORDS] __attribute__((__aligned__(1 << LO_BITS_DEPTH)));
#define DECIMATE 4
#define RX_STRIDE (2 * IQ_SAMPLES * DECIMATE)
#define RX_BITS_DEPTH 13
#define RX_WORDS (1 << (RX_BITS_DEPTH - 2))
static_assert(RX_STRIDE * 4 <= RX_WORDS, "RX_STRIDE * 4 <= RX_WORDS");
static uint32_t rx_cos[RX_WORDS] __attribute__((__aligned__(1 << RX_BITS_DEPTH)));
#define INIT_SAMPLE_RATE 100000
#define INIT_FREQ 94600000
#define INIT_GAIN 127
#define NUM_GAINS 29
static int gains[NUM_GAINS] = { 0, 9, 14, 27, 37, 77, 87, 125, 144, 157,
166, 197, 207, 229, 254, 280, 297, 328, 338, 364,
372, 386, 402, 421, 434, 439, 445, 480, 496 };
static int sample_rate = INIT_SAMPLE_RATE;
static int gain = INIT_GAIN;
#define SIN_PHASE (0u)
#define COS_PHASE (3u << 30)
static int dma_ch_rx1 = -1;
static int dma_ch_rx2 = -1;
static int dma_ch_mix1 = -1;
static int dma_ch_mix2 = -1;
static int dma_ch_samp_cos = -1;
static int dma_t_samp = -1;
static int dma_ch_in_cos = -1;
static queue_t iq_queue;
static uint8_t iq_queue_buffer[IQ_QUEUE_LEN][IQ_BLOCK_LEN];
static size_t iq_queue_pos = 0;
static uint32_t rnd = 0;
inline static uint32_t rnd_next()
{
rnd = rnd * 0x41c64e6d + 12345;
return rnd;
}
static void init_lo()
{
gpio_disable_pulls(LO_PIN);
pio_gpio_init(PIO, LO_PIN);
gpio_set_drive_strength(LO_PIN, GPIO_DRIVE_STRENGTH_12MA);
gpio_set_slew_rate(LO_PIN, GPIO_SLEW_RATE_FAST);
const uint16_t insn[] = {
pio_encode_out(pio_pindirs, 1),
};
pio_program_t prog = {
.instructions = insn,
.length = sizeof(insn) / sizeof(*insn),
.origin = -1,
};
pio_sm_restart(PIO, LO_SM);
pio_sm_clear_fifos(PIO, LO_SM);
if (pio_can_add_program(PIO, &prog))
prog.origin = pio_add_program(PIO, &prog);
pio_sm_config pc = pio_get_default_sm_config();
sm_config_set_out_pins(&pc, LO_PIN, 1);
sm_config_set_set_pins(&pc, LO_PIN, 1);
sm_config_set_wrap(&pc, prog.origin, prog.origin + prog.length - 1);
sm_config_set_clkdiv_int_frac(&pc, 1, 0);
sm_config_set_fifo_join(&pc, PIO_FIFO_JOIN_TX);
sm_config_set_out_shift(&pc, false, true, 32);
pio_sm_init(PIO, LO_SM, prog.origin, &pc);
pio_sm_set_consecutive_pindirs(PIO, LO_SM, LO_PIN, 1, GPIO_OUT);
pio_sm_exec_wait_blocking(PIO, LO_SM, pio_encode_set(pio_pins, 0));
}
static void init_fb()
{
gpio_disable_pulls(FB_PIN);
pio_gpio_init(PIO, FB_PIN);
// NOTE: Not sure if this is ideal.
hw_set_bits(&PIO->input_sync_bypass, 1u << RX_PIN);
gpio_set_input_hysteresis_enabled(RX_PIN, false);
gpio_set_drive_strength(FB_PIN, GPIO_DRIVE_STRENGTH_2MA);
gpio_set_slew_rate(FB_PIN, GPIO_SLEW_RATE_SLOW);
const uint16_t insn[] = {
pio_encode_mov_not(pio_pins, pio_pins) | pio_encode_sideset(1, 1) |
pio_encode_delay(0),
pio_encode_nop() | pio_encode_sideset(1, 0) | pio_encode_delay(0),
};
pio_program_t prog = {
.instructions = insn,
.length = sizeof(insn) / sizeof(*insn),
.origin = -1,
};
pio_sm_restart(PIO, FB_SM);
pio_sm_clear_fifos(PIO, FB_SM);
if (pio_can_add_program(PIO, &prog))
prog.origin = pio_add_program(PIO, &prog);
pio_sm_config pc = pio_get_default_sm_config();
sm_config_set_sideset(&pc, 1, false, true);
sm_config_set_in_pins(&pc, RX_PIN);
sm_config_set_out_pins(&pc, FB_PIN, 1);
sm_config_set_set_pins(&pc, FB_PIN, 1);
sm_config_set_sideset_pins(&pc, FB_PIN);
sm_config_set_wrap(&pc, prog.origin, prog.origin + prog.length - 1);
sm_config_set_clkdiv_int_frac(&pc, 1, 0);
pio_sm_init(PIO, FB_SM, prog.origin, &pc);
pio_sm_set_consecutive_pindirs(PIO, FB_SM, FB_PIN, 1, GPIO_OUT);
}
static void init_rx()
{
gpio_disable_pulls(RX_PIN);
pio_gpio_init(PIO, RX_PIN);
const uint16_t insn[] = {
pio_encode_in(pio_pins, 1),
};
pio_program_t prog = {
.instructions = insn,
.length = sizeof(insn) / sizeof(*insn),
.origin = -1,
};
pio_sm_restart(PIO, RX_SM);
pio_sm_clear_fifos(PIO, RX_SM);
if (pio_can_add_program(PIO, &prog))
prog.origin = pio_add_program(PIO, &prog);
pio_sm_config pc = pio_get_default_sm_config();
sm_config_set_in_pins(&pc, RX_PIN);
sm_config_set_wrap(&pc, prog.origin, prog.origin + prog.length - 1);
sm_config_set_clkdiv_int_frac(&pc, 1, 0);
sm_config_set_fifo_join(&pc, PIO_FIFO_JOIN_RX);
sm_config_set_in_shift(&pc, false, true, 32);
pio_sm_init(PIO, RX_SM, prog.origin, &pc);
pio_sm_set_consecutive_pindirs(PIO, RX_SM, RX_PIN, 1, GPIO_IN);
}
static void init_ad()
{
const uint16_t insn[] = {
pio_encode_jmp_y_dec(1),
pio_encode_out(pio_pc, 2),
pio_encode_out(pio_pc, 2),
pio_encode_jmp_x_dec(2),
/* Avoid Y-- on wrap. */
pio_encode_out(pio_pc, 2),
/*
* Should wrap here.
* Jump to this portion must be inserted from the outside.
*/
pio_encode_in(pio_x, 32),
pio_encode_in(pio_y, 32),
pio_encode_set(pio_x, 0),
pio_encode_set(pio_y, 0),
pio_encode_out(pio_pc, 2),
};
pio_program_t prog = {
.instructions = insn,
.length = sizeof(insn) / sizeof(*insn),
.origin = 0,
};
pio_sm_restart(PIO, AD_SM);
pio_sm_clear_fifos(PIO, AD_SM);
if (pio_can_add_program(PIO, &prog))
pio_add_program(PIO, &prog);
pio_sm_config pc = pio_get_default_sm_config();
sm_config_set_wrap(&pc, prog.origin, prog.origin + 5 - 1);
sm_config_set_clkdiv_int_frac(&pc, 1, 0);
sm_config_set_in_shift(&pc, false, true, 32);
sm_config_set_out_shift(&pc, false, true, 32);
pio_sm_init(PIO, AD_SM, prog.origin + 1, &pc);
}
#define STEP_BASE ((UINT_MAX + 1.0) / CLK_SYS_HZ)
static uint32_t freq_step = 1;
static void lo_generate(uint32_t *buf, double freq, uint32_t phase)
{
freq_step = STEP_BASE * freq;
unsigned down = 2 + __builtin_clz(freq_step);
for (size_t i = 0; i < LO_WORDS; i++) {
uint32_t bits = 0;
int shift = (rnd_next() >> down) - (rnd_next() >> down);
for (int j = 0; j < 32; j++) {
bits |= (phase + shift) >> 31;
bits <<= 1;
phase += freq_step;
}
buf[i] = bits;
}
}
static void lo_tweak(uint32_t *buf, uint32_t phase)
{
static size_t i = 0;
uint32_t bits = 0;
unsigned down = 2 + __builtin_clz(freq_step);
phase += freq_step * i * 32;
for (int j = 0; j < 32; j++) {
int shift = (rnd_next() >> down) - (rnd_next() >> down);
bits |= (phase + shift) >> 31;
bits <<= 1;
phase += freq_step;
}
buf[i] = bits;
i = (i + 1) & (LO_WORDS - 1);
}
static void rx_lo_init(double req_freq, bool align)
{
const double step_hz = (double)CLK_SYS_HZ / (8 << LO_BITS_DEPTH);
double freq = req_freq;
if (align)
freq = round(freq / step_hz) * step_hz;
lo_generate(lo_cos, freq, COS_PHASE);
}
static const uint32_t samp_insn = 5;
static void rf_rx_start()
{
dma_ch_rx1 = dma_claim_unused_channel(true);
dma_ch_rx2 = dma_claim_unused_channel(true);
dma_ch_mix1 = dma_claim_unused_channel(true);
dma_ch_mix2 = dma_claim_unused_channel(true);
dma_ch_samp_cos = dma_claim_unused_channel(true);
dma_t_samp = dma_claim_unused_timer(true);
dma_channel_config dma_conf;
/* Copy PDM bitstream into decimator. */
dma_conf = dma_channel_get_default_config(dma_ch_rx1);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, false);
channel_config_set_write_increment(&dma_conf, false);
channel_config_set_dreq(&dma_conf, pio_get_dreq(PIO, RX_SM, GPIO_IN));
channel_config_set_chain_to(&dma_conf, dma_ch_rx2);
dma_channel_configure(dma_ch_rx1, &dma_conf, &PIO->txf[AD_SM], &PIO->rxf[RX_SM], UINT_MAX,
false);
dma_conf = dma_channel_get_default_config(dma_ch_rx2);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, false);
channel_config_set_write_increment(&dma_conf, false);
channel_config_set_dreq(&dma_conf, pio_get_dreq(PIO, RX_SM, GPIO_IN));
channel_config_set_chain_to(&dma_conf, dma_ch_rx1);
dma_channel_configure(dma_ch_rx2, &dma_conf, &PIO->txf[AD_SM], &PIO->rxf[RX_SM], UINT_MAX,
false);
/* Drive the LO capacitor. */
dma_conf = dma_channel_get_default_config(dma_ch_mix1);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, true);
channel_config_set_write_increment(&dma_conf, false);
channel_config_set_ring(&dma_conf, GPIO_IN, LO_BITS_DEPTH);
channel_config_set_dreq(&dma_conf, pio_get_dreq(PIO, LO_SM, GPIO_OUT));
channel_config_set_chain_to(&dma_conf, dma_ch_mix2);
dma_channel_configure(dma_ch_mix1, &dma_conf, &PIO->txf[LO_SM], lo_cos, UINT_MAX, false);
dma_conf = dma_channel_get_default_config(dma_ch_mix2);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, true);
channel_config_set_write_increment(&dma_conf, false);
channel_config_set_ring(&dma_conf, GPIO_IN, LO_BITS_DEPTH);
channel_config_set_dreq(&dma_conf, pio_get_dreq(PIO, LO_SM, GPIO_OUT));
channel_config_set_chain_to(&dma_conf, dma_ch_mix1);
dma_channel_configure(dma_ch_mix2, &dma_conf, &PIO->txf[LO_SM], lo_cos, UINT_MAX, false);
/* Pacing timer for the sampling script trigger channel. */
dma_timer_set_fraction(dma_t_samp, 1, CLK_SYS_HZ / (sample_rate * DECIMATE));
/* Trigger accumulator values push. */
dma_conf = dma_channel_get_default_config(dma_ch_samp_cos);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, false);
channel_config_set_write_increment(&dma_conf, false);
channel_config_set_ring(&dma_conf, false, 4);
channel_config_set_high_priority(&dma_conf, true);
channel_config_set_dreq(&dma_conf, dma_get_timer_dreq(dma_t_samp));
dma_channel_configure(dma_ch_samp_cos, &dma_conf, &PIO->sm[AD_SM].instr, &samp_insn,
UINT_MAX, false);
init_lo();
init_fb();
init_rx();
init_ad();
dma_channel_start(dma_ch_rx1);
dma_channel_start(dma_ch_mix1);
dma_channel_start(dma_ch_samp_cos);
pio_sm_set_enabled(PIO, LO_SM, true);
pio_sm_set_enabled(PIO, FB_SM, true);
pio_sm_set_enabled(PIO, RX_SM, true);
pio_sm_set_enabled(PIO, AD_SM, true);
}
static void rf_rx_stop(void)
{
pio_sm_set_enabled(PIO, LO_SM, false);
pio_sm_set_enabled(PIO, FB_SM, false);
pio_sm_set_enabled(PIO, RX_SM, false);
pio_sm_set_enabled(PIO, AD_SM, false);
sleep_us(10);
dma_channel_abort(dma_ch_rx1);
dma_channel_abort(dma_ch_rx2);
dma_channel_abort(dma_ch_mix1);
dma_channel_abort(dma_ch_mix2);
dma_channel_abort(dma_ch_samp_cos);
dma_channel_cleanup(dma_ch_rx1);
dma_channel_cleanup(dma_ch_rx2);
dma_channel_cleanup(dma_ch_mix1);
dma_channel_cleanup(dma_ch_mix2);
dma_channel_cleanup(dma_ch_samp_cos);
dma_channel_unclaim(dma_ch_rx1);
dma_channel_unclaim(dma_ch_rx2);
dma_channel_unclaim(dma_ch_mix1);
dma_channel_unclaim(dma_ch_mix2);
dma_channel_unclaim(dma_ch_samp_cos);
dma_timer_unclaim(dma_t_samp);
dma_ch_rx1 = -1;
dma_ch_rx2 = -1;
dma_ch_mix1 = -1;
dma_ch_mix2 = -1;
dma_ch_samp_cos = -1;
dma_t_samp = -1;
}
static void rf_rx(void)
{
const uint32_t base = (uint32_t)rx_cos;
int prev = 0;
int pos = 0;
while (true) {
if (multicore_fifo_rvalid()) {
multicore_fifo_pop_blocking();
multicore_fifo_push_blocking(0);
return;
}
int head = (dma_hw->ch[dma_ch_in_cos].write_addr - base) / 4;
int delta = (head < pos ? head + RX_WORDS : head) - pos;
sleep_us(10);
while (delta < RX_STRIDE) {
sleep_us(1);
head = (dma_hw->ch[dma_ch_in_cos].write_addr - base) / 4;
delta = (head < pos ? head + RX_WORDS : head) - pos;
}
const uint32_t *cos_ptr = rx_cos + pos;
pos = (pos + RX_STRIDE) & (RX_WORDS - 1);
uint8_t *block = iq_queue_buffer[iq_queue_pos];
uint8_t *blockptr = block;
/*
* Since every 2 samples add to either +1 or -1,
* the maximum amplitude in one direction is 1/2.
*/
int64_t max_amplitude = CLK_SYS_HZ / 2;
/*
* We are allowing the counters to only go as high
* as sampling rate, but the I/Q conversion splits
* samples between two channels.
*/
max_amplitude /= sample_rate * 2;
for (int i = 0; i < IQ_SAMPLES; i++) {
int sI = 0, sQ = 0;
int pos, neg;
// +I
pos = *cos_ptr++;
neg = *cos_ptr++;
sI += pos - neg - prev;
prev = pos - neg;
// +Q
pos = *cos_ptr++;
neg = *cos_ptr++;
sQ += pos - neg - prev;
prev = pos - neg;
// -I
pos = *cos_ptr++;
neg = *cos_ptr++;
sI -= pos - neg - prev;
prev = pos - neg;
// -Q
pos = *cos_ptr++;
neg = *cos_ptr++;
sQ -= pos - neg - prev;
prev = pos - neg;
int64_t I = sI;
int64_t Q = sQ;
I *= gain;
I -= (max_amplitude * 181) / 256;
I /= max_amplitude;
if (I > 127)
I = 127;
else if (I < -128)
I = -128;
*blockptr++ = (uint8_t)I + 128;
Q *= gain;
Q -= (max_amplitude * 181) / 256;
Q /= max_amplitude;
if (Q > 127)
Q = 127;
else if (Q < -128)
Q = -128;
*blockptr++ = (uint8_t)Q + 128;
}
if (queue_try_add(&iq_queue, &block)) {
iq_queue_pos = (iq_queue_pos + 1) & (IQ_QUEUE_LEN - 1);
}
/* Randomize LO phase in the next word. */
for (int i = 0; i < 8; i++) {
lo_tweak(lo_cos, COS_PHASE);
}
}
}
static void run_command(uint8_t cmd, uint32_t arg)
{
if (0x01 == cmd) {
/* Tune to a new center frequency */
rx_lo_init(arg + sample_rate, true);
} else if (0x02 == cmd) {
/* Set the rate at which IQ sample pairs are sent */
sample_rate = arg;
dma_timer_set_fraction(dma_t_samp, 1, CLK_SYS_HZ / (sample_rate * DECIMATE));
rx_lo_init(arg + sample_rate, true);
} else if (0x04 == cmd) {
/* Set the tuner gain level */
gain = INIT_GAIN * powf(10.0f, arg / 200.0f);
} else if (0x0d == cmd) {
/* Set tuner gain by the tuner's gain index */
if (arg >= NUM_GAINS)
arg = NUM_GAINS - 1;
gain = INIT_GAIN * powf(10.0f, gains[arg] / 200.0f);
}
}
static int check_command(void)
{
static uint8_t buf[5];
static int pos = 0;
int c;
while ((c = getchar_timeout_us(0)) >= 0) {
if (0 == pos && 0 == c)
return 0;
buf[pos++] = c;
if (5 == pos) {
uint32_t arg = (buf[1] << 24) | (buf[2] << 16) | (buf[3] << 8) | buf[4];
run_command(buf[0], arg);
pos = 0;
return buf[0];
}
}
return -1;
}
static void do_rx()
{
rf_rx_start();
sleep_us(100);
dma_ch_in_cos = dma_claim_unused_channel(true);
dma_channel_config dma_conf;
dma_conf = dma_channel_get_default_config(dma_ch_in_cos);
channel_config_set_transfer_data_size(&dma_conf, DMA_SIZE_32);
channel_config_set_read_increment(&dma_conf, false);
channel_config_set_write_increment(&dma_conf, true);
channel_config_set_ring(&dma_conf, GPIO_OUT, RX_BITS_DEPTH);
channel_config_set_dreq(&dma_conf, pio_get_dreq(PIO, AD_SM, false));
dma_channel_configure(dma_ch_in_cos, &dma_conf, rx_cos, &PIO->rxf[AD_SM], UINT_MAX, true);
multicore_launch_core1(rf_rx);
const uint8_t *block;
while (queue_try_remove(&iq_queue, &block))
/* Flush the queue */;
while (true) {
int cmd;
while ((cmd = check_command()) >= 0)
if (0 == cmd)
goto done;
if (queue_try_remove(&iq_queue, &block)) {
fwrite(block, IQ_BLOCK_LEN, 1, stdout);
fflush(stdout);
}
}
done:
multicore_fifo_push_blocking(0);
multicore_fifo_pop_blocking();
sleep_us(10);
multicore_reset_core1();
rf_rx_stop();
dma_channel_abort(dma_ch_in_cos);
dma_channel_cleanup(dma_ch_in_cos);
dma_channel_unclaim(dma_ch_in_cos);
dma_ch_in_cos = -1;
}
int main()
{
vreg_set_voltage(VREG_VOLTAGE);
set_sys_clock_khz(CLK_SYS_HZ / KHZ, true);
clock_configure(clk_peri, 0, CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS, CLK_SYS_HZ,
CLK_SYS_HZ);
/* Enable PSU PWM mode. */
gpio_init(PSU_PIN);
gpio_set_dir(PSU_PIN, GPIO_OUT);
gpio_put(PSU_PIN, 1);
bus_ctrl_hw->priority |= BUSCTRL_BUS_PRIORITY_DMA_W_BITS | BUSCTRL_BUS_PRIORITY_DMA_R_BITS;
stdio_usb_init();
setvbuf(stdout, NULL, _IONBF, 0);
queue_init(&iq_queue, sizeof(uint8_t *), IQ_QUEUE_LEN);
rx_lo_init(INIT_FREQ - INIT_SAMPLE_RATE, true);
while (true) {
if (check_command() > 0) {
static const uint32_t header[3] = { __builtin_bswap32(0x52544c30),
__builtin_bswap32(5),
__builtin_bswap32(NUM_GAINS) };
fwrite(header, sizeof header, 1, stdout);
fflush(stdout);
do_rx();
}
sleep_ms(10);
}
}